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High-speed planing boats have gained wide popularity in many areas of boating, including the
military, pleasure boaters, and high speed ferries. Yet planing craft are known to suffer from
unexpected behavior at their operational speeds. Research at the University of Michigan intend-
ing to understand dynamic instability has used a water impact model to determine the flow over a
cross section of the hull. The impact model takes a two-dimensional section of the hull and pre-
dicts how the flow moves over the bottom as the hull section enters the water. Based upon a low
order strip theory, the planing hull is viewed as a series of cross sections at different points of
impact (near the bow the hull is just starting to enter the water, near the transom the hull has
mostly entered the water) this model determines the transverse flow characteristics over the entire
hull. The resulting boundary value problem can be numerically solved using a two-dimensional
vortex distribution.

Xu [2] developed a theory based on this impact model which allowed for asymmetric hulls and
asymmetric vertical impact. Xu built on Vorus’ [1] work which included a “flat” cylinder theory
to allow arbitrary sectional contour impact, reordering the variables in the first order in a physi-
cally consistent manner. Xu introduced two types of vertical impact due to asymmetry. Type A
flow is when there is small asymmetry and on both sides the zero-pressure points (C; and C,)and
jet-spray roots (B; and B,)advance out towards the chine. Type B flow occurs when there is large

asymmetry and the flow is forced to separate at the keel so that only on one side does the zero-
pressure point (C;) advance out towards the chine.
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Figure 2: Type B Flow
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Xu investigated the limits of asymmetry in his thesis. As the heel angle, 6 (which equals one-
half the difference between B, and B, and represents the asymmetry), increased from zero, the
wetted point, C,, (on the left side of the hull) in Type A flow moved backward until it reached the
keel. When C, reached the keel the flow was forced to separate and the impact became Type B.
The conditions were obtained from the basic solutions of flat-sided contours with constant impact
velocity. By holding g, constant and determining the angle 6 at which Type B flow occurred, B,
was determined. The limiting angle of B, versus the corresponding B, is plotted in Figure 3 and
suggests that the critical value of B, is relatively insensitive to 8 ;.
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Figure 3: For each B, the value of B, which causes Type B flow [3]

Asymmetry is very important when considering transverse plane motions. Transverse stability
is also affected by horizontal velocity. In order to predict stability in the transverse plane, hori-
zontal velocity during impact needs to be taken into consideration. Ideally, both asymmetry and
horizontal velocity would be included, but as a first attempt consider a symmetric hull that has
both a vertical and a horizontal velocity during impact.
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Figure 4: Symmetric Impact with Horizontal Velocity
Such a hull, when roll is constrained, would produce impact flows similar to asymmetric flow
where the zero-pressure point moves out toward the chine faster on one side than the other. In

other words, such an impact would produce a Type A flow. The question posed here is under what
conditions Type B flow can be produced, i.e. what is the ratio of horizontal velocity to vertical
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velocity at which the flow separates off the keel at impact. A symmetric case is first considered to
reveal flow characteristics that are significant contributions towards solving the transverse stabil-
ity problem.

The model is defined by the dynamic boundary condition, the kinematic boundary condition,
the kutta conditions, and the displacement continuity condition. The dynamic boundary condi-
tions result in the equations for the velocities of the jet roots.
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where Ygy; and Ygy are the jet velocities and vy and v,, are the perturbation velocities. The jet

spray root and zero-pressure point locations are nondimensionalized by the right hand side zero-
pressure point and are by, by, 1, and ¢, respectively. The dynamic boundary conditions are found

assuming v, = —% and by using the Biot-Savart law.
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The solution to this equation is
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satisfied at the wetted points C; and C, to guarantee velocity continuity. In other words, the sin-
gularities in y(¢,t) at & = 1 and & = -c, must be removed. That is,
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and
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The displacement continuity condition is a conservation of mass requirement. It requires that the
displacement of the cylinder and the free surface contours combine to be a continuous nontrivial
function of y to the second order. Similar to the Kutta conditions these are found by removing
singularities at the points of discontinuity.
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The results of an impact model that included both asymmetry and horizontal velocity could be
incorporated into a nonlinear motion simulator in order to provide an analytical transverse stabil-
ity tool. The results would also allow a dynamic righting arm curve to be developed for high
speed planing craft. Horizontal velocity is a significant component of transverse planing stability
and as such needs to be addressed. This is the goal of solving the problem presented here.
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