Analytical expressions of unsteady ship wave patterns
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The time-harmonic ship wave patterns are studied by considering free-surface potential flows generated by
a point source pulsating and advancing at a uniform forward speed. New expressions in analytically closed form
are obtained by an asymptotic analysis on the wave component which is represented by a single Fourier integral
along the dispersion curves defined in the Fourier plane by the dispersion relation. These new expressions
together with the results given in [1] including simple relations between the dispersion curves and important
aspects (wavelengths, directions of wave propagation, pbase and group velocities, and cusp angles) of the
corresponding far-field waves, draw a complete and analytical picture of unsteady ship wave patterns.

1 Generic representation of wave components

Within an analysis in frequency domain, the time-harmonic velocity potential g(g“ ) at a field point £=(&,7,¢)
can be expressed in the form G5+ GF where G5 is defined in terms of distribution of Rankine singularities, and
GF accounting for free-surface effects. Furthermore, G¥ is decomposed, in [2] and [3], into a nonoscillatory local
component GV and a wave component G" which is defined by the single Fourier integral

4m‘gw=fD [(21+52)Se**/|VD]]e"*ds with @=Za+§8, h=v/22+y2, (Z,§)=(z.9)/h (1)
=0

along every dispersion curve defined in the Fourier plane (a,3) by the dispersion relation D =0. Here, ds is
the arc length along a dispersion curve and |VD|?=D2+D3. The function %, =sign(D;) associated with the
fact to satisfy the radiation condition is obtained by a formal analysis performed in [2], while Z; is expressed in
different ways in [3] according to the shape of the dispersion curve. The spectrum function S(a, 3) is defined in
terms of distribution of elementary waves over the mean wetted hull and the mean waterline of the ship. For the
sake of simplicity, we consider here the special case of S=1 which corresponds to a source at the point (a, b, c),
and (z,y,z) = (§—a,n—b,(+c), the expression (1) represents exactly the wave component of usual free-surface
Green functions. Furthermore, the identity ¥o = sign(ZD,+3Dg) given originally in [2] is used without loss of
generality, since the extension to any form of X2 and the spectral function S is straightforward.

The dispersion relation D=0 defines usually several dispersion curves. Each dispersion curve is related to
a wave system. Wave systems can further be regrouped into different classes according to the type of associated
dispersion curves. Analytical expressions of different classes of unsteady ship waves can be obtained by an
asymptotical analysis of (1) and summarized hereafter.

2 Unsteady ship wave patterns
For the free-surface time-harmonic ship flows in deep water, the dispersion function D{a, 8) is given by

D= (Fa-f)* -k with k=+/a?+3? (2)
where f=w+/L/g and F=U/\/gL are respectively called nondimensional frequency and Froude number, as w
and U stand respectively for wave encounter frequency and ship’s speed, and L and g for ship’s length and the
acceleration of gravity. The dispersion function (2) shows that the dispersion curves D = 0 are symmetric with
respect to 8 = 0 and there exist three or two dispersion curves if 7= fF =wU/g is smaller or larger than 1/4,
respectively. For 7 < 1/4, the three dispersion curves intersect the axis 8 = 0 at four values of a, which are
denoted of and o and given by A

Flaf =7+(1/2-1/4£7) and F2aF =7+(1/2++/1/4%7) , (3)

such that two open dispersion curves are located in the regions —o0 < a < a7 and o} <a < oo, and a close
dispersion curve in the region o] <a <o . For 7>1/4, we have only two open dispersion curves located in
the regions —00 <a < o} and a} <a<oo. In summary, there are two types of dispersion curves : a close
dispersion curve for 7 < 1/4 and two open dispersion curves for F' > 0. Analytical expressions of ship wave
patterns associated with these two types of distinct dispersion curve are given now. .

Ring waves - Close dispersion curve

The ring waves are associated with the close dispersion curve comprised between o; and of for 7<1/4.
The dispersion curve is described by a parametric equation

a=k(B)cos®, B=k(®)sind with k/2=(y/1/4+Tcos6—1/2)/(r cosb) (4)
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in which the variables (a, 3, k) are understood to be multiplied by the frequency-scale factor 1/f2. The station-
ary point {ar, 8;) =k, (cosb,,sin 0, ) satisfying ¢’ =0 is determined by '

Z6, — §lor+2k¥%)=0 and FB, +F(a, +2k¥?) < 0 (5a)
At the stationary point 8 =46,, we define
Ch=Zartify, h=wblk! ke =2k [k 2 =11/2,  @5=gpl(k! ~3KK! [k —2K)/(3k,)]  (5b)

where k' =dk/d6, k" =d?k/d6? and k" =d3k/df® are used. The analytical expression obtained from asymptotic
analysis for the ring waves is written as

GR = exp(—ihpp)Ap/+/ (¢5/95) +ihey with Ap/f? = ~%ikrez’°'/\/7r(l/4+7'cos 6,) (6)

which is of order O(e~"¥5 /v/h) for h — co consistent with the classical result obtained from the stationary
phase method. The fact that the analytical expression (6) has finite values at h — 0 is expected so that it is
well suited for numerical evaluations in the near field.

Transverse and divergent waves - Open dispersion curves

Three wave systems associated with open dispersion curves as defined in [3] are the inner-V waves corre-
sponding to the right one located in o} <a < oo for 7 >0, the outer-V waves related to left open dispersion curve
located in —co <a<a for 7<1/4 and the ring-fan waves associated with left open dispersion curve located in
—oco<a<aj for 7>1/4. All open dispersion curves can be described by a unique parameter equation as

, a(uw) =7-5,vVk, Bu)=Vk—-0o? with k=ko(1+u?) (7
for 0<u<oc, in which the Fourier variables (o, 8, k) are understood to be multiplied by the Froude-scale factor

F2, Furthermore, ¥; = —1 and ko = F2a} for the inner-V waves, £; =1 for both outer-V and ring-fan waves
while ko=—F2o; for the outer-V waves and ko = F2a; for the ring-fan waves.

The open dispersion curve described by (7) has an inflection point at u=wu, determined by
k2 —(3/2)ke+Z147/ke—37% =0 (8a)
with k. =k(u.) which gives the cusp angle with respect to the track of the source point
~e=arctan(1/+/6kc~1) (8b)
for both inner-V and outer-V waves, and for the ring-fan waves at 7>+/2/27 and
Ne=T — arctan(l/\/(%:f) (8c)
for the ring-fan waves in 1/4<7 < \/5-/_2-7 In fact, yo=7/2 at 7= \/§7ﬁ, i.e. strictly no waves propagate
upstream for 7>+/2/27, an interesting exact result found in [5].

Following the analysis given in [1], there exist two points of stationary phase for vy = arctan[§/(—Z)} < 7.
at u=u; located in [0, u.] and u=wq4 in [u.,o0) which are determined by

2hrd — Flor,a+T12k07)=0 and  sign[§fia + Fard +T262 7)) = -5 (9a)

with (a4, Be.d, kt,a) =[a(ut,a), B(ut,a), k(ue,a)]. At the stationary points u=u; 4, we define
- - = b3 ’d T 7
0t =Ton,a+T8a, 950 =(ala+T0LL)/2, &5 =(Tolu+Tra)/3 (9b)

where (o, 8") = (2a/du?,d?3/du?) and (a",B") = (d®a/du? d®8/du®) are used. Corresponding to the
stationary points (az, B¢, k) and (a4, B4, k4), we may define respectively the transverse waves GT and divergent
waves GP. The analytical expressions for both transverse and divergent waves are written as

. Af)\/;" 2 Af)l‘Ptz/‘Pm 2t joNE| t g 213
9" = e(ihdd) (\/ @eh) i riheh | 3 (o—ihgh/2} K%[z(”_’h%/ 2)%lea/ sl ] (10a)

- 0 d Agvm 2 Adles/ A . ihod /913 08 /)3 ) ob
GP = exp(—ihyf) (\/(vg/wg)“-i'ih(/ﬁg +3 (o+ihpt/2)} K§[2(0+ h3/2)? w3/ e5l ] (10b)

where K /3(w) is the modified Bessel function defined in [4) and o a positive real constant. For v> ., we may
use the values of (ac, B, k) at the inflection point u=1wu, to define

o (Fae+TB)° (ol +§B))(Eel+3h:) 1
C — 5 - a
¥o zac-'—yﬂc-i— 3(fag'+§ﬂé”)2 .‘Z'Olé"‘i"yﬂé" ( )
1 _ = _
P =Za+PB; — 5(Zol +T80)% /(o +96.") and @§=(Ta +76:")/3 (11b)
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and the transverse and divergent waves by
¢ o—(he$)? (95 /03)* €1o€ /ipE
gT = exp(_ihwg) 0€ cl . 12 s 2 AOI(pl/‘p3l -
2(¢5/#5) 3 (o—ihg§/2)s
8e~(h¢§)2(w§/<p§)‘ 2 Agles/vsl
2(p5/v%)? 3 (o+ihg5/2)%

Kg[2(0;—ih<p§/2)%Iwﬁ/w%ls]) (12a)

9D=exp(—ih</>8)( Kg[2(0+ih¢§/2)%|<p§/<p§l3]) : (12b)A

The amplitude function A5%° involved in (10a), (10b), (12a) and (12b) are determined by

2 F2AS = —yie vt (\[Roksae/Brd.c) VEeae—ko (13)

It can be checked that the second term in both (10a) for G and (10b) for G2, involving K3 decreases

exponentially for A — co as far as goé’d #0 and that both transverse and divergent waves decrease at a rate of
order O(h~'/2) within the wedge v <~.. Along the wedge y="., it can be shown that (10a) and (10b) are of
order O(h~1/3) as ©%?—0, consistent with the classical results. The amplitude of G7 represented by (12a) and
GP by (12b) decreases exponentially for ¢§ # 0, i.e. 7>, and at a rate of order O(h~1/3) when ¢§ — 0, i.e.
Y=, and equal to the results by (10a) and (10b).

3 Discussions and conclusions

We have summarized in this study analytical expressions of four ship-wave systems each of which is associated
with a distinct dispersion curve by regrouping them into three classes. The first associated with a closed
dispersion curve is called ring waves. The second associated with the portion of open dispersion curves limited
between two inflexion points located symmetrically in the upper and lower half Fourier plane, is called transverse
waves. The third class of unsteady ship waves is associated with the portions of open dispersion curves from
the inflexion points to infinity, and called divergent waves. The ring waves propagate out in all directions for
limited values of the Brard number 7 <1/4 and their amplitude decreases at a rate of order O(h~%) at h— oo.
The transverse and divergent waves are limited by a cusp line whose angle defined by (8b) and (8c¢) is parallel to
the direction of the normal vector at the inflection of corresponding dispersion curve. Within the wedge limited
by the cusp line, the amplitude of transverse and divergent waves decreases at the same rate like O(h‘%) while
along the wedge the decreasing rate is of O(h~3%). Outside the wedge, the non-oscillatory local component is
dominant since the decreasing rate is of order O(h~1) while the wave amplitude falls off exponentially. These
important features of transverse and divergent waves are well described by (10a) and (10b) within the wedge,
(12a) and (12b) outside the wedge. Furthermore, the expressions (10a) and (12a) for transverse waves as well
as (10b) and (12b) for divergent waves provide the same and correct asymptotic values along the wedge so that
they are continuous across the wedge, as shown by Fig.1 and Fig.2 which depict G7+GP? of the inner-V waves
at 7=1/4. In both figures, the real and imaginary parts of GT+ G? are presented by the solid and dashed lines,
respectively. The value z=0 is used on Fig.1 and z/F2?=—0.1 on Fig.2.
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The classical treatments to the phase function which exhibits two coalescing stationary points were pre-
sented in [6] to develop uniform asymptotic expansions of an integral. Very fine results can be obtained as
presented in [7] in applying to the Neumann-Kelvin steady waves. However, we prefer here forgoing expres-
sions obtained in a different way (which will be presented elsewhere for the sake of space) to describe more
complicated unsteady ship waves for several reasons.

Firstly, the expressions (10a) for transverse waves G7 and (10b) for divergent waves GP are ezplicit in that
the wavenumbers k%4, more exactly wavenumber vectors (a4, 3t,d4), corresponding to the stationary points
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ko < k¢ < k. and k. < kg < o0 partitioned by k. given at the inflection point of the corresponding dispersion
curve. The decreasing rate is of order (h~1/2) since the terms involving K, /3 are exponentially small at h — oo
for a given v <+.. At the wedge v =~., we have k; = k. = k; and the terms involving K3 are reduced to
those of order O(h~1/3) while the first terms in (10a) and (10b) tend to zero as <p;’d—>0. The transverse waves
GT and the divergent waves G2 involved in the inner-V waves, are depicted separately on Fig.3 at 7 =1/4,
z/F?=—0.01 and 7 =1./2 with tan(y;) = /2/25. Fig.4 shows the sum G7 +GP and compared with the line
integral (1). It is shown that the difference between analytical expressions (10a) and (10b) and the line integral
(1), represented by the thick solid and dashed lines, is negligible for F2h>10. In both Fig.3 and Fig.4, the solid
and dashed lines represent the real and imaginary parts, respectively.
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Concerning divergent waves defined by (10b), as already noted, the decreasing rate is of O(h‘§) in a given
direction within the wedge and O(h“%) along the wedge as well as the transverse waves. However, for a field
point in the downstream Z <0 with §— 0, the values of the stationary point (ay,8s,kq¢) defined by (9a) are

given approximately
ag ~ ~13/(2§), Pa~3F°/(47%) and kg~ 3*/(47°) (14)

as the leading term. The amplitude function Ag defined by (13) decreases exponentially for a field point
approaching to the track of an immerged source point (z <0). Furthermore, if z=0 and §—0, i.e. a field point
approaches to the track of a source located at the free surface, the divergent waves are highly oscillatory with
infinitely increasing amplitude and infinitely decreasing wavelength, since ¢§ ~ ko and ¢$/¢% ~ 0 involved in
(10b). This singular and highly-oscillatory properties of ship waves are analyzed in [8] in great detail.

Secondly, the expressions (6) for ring waves, (10a) and (12a) for transverse waves, and (10b) and (12b) for
divergent waves are regular in the near field even for A — 0, which is not the case in classical asymptotic analysis.
Far-field waves represented by these analytical expressions are extended to the near field and complementary
to the local component which is dominant. Finally, the last but not the least concerns calculating the line
integral (1) in a complete way. Indeed, the asymptotic analysis performed to obtain the analytical expressions,
provides formulations well suited for numerical evaluations of the remaining term - another line integral with
the integrand of (1) after subtracting the terms related to the analytical expressions.

In summary, we have given the new expressions of unsteady ship wave patterns in an analytical form. These
expressions are critically important in calculating the ship-motion Green function in the far field. They may be
very useful as well in a number of analyzes such as estimating wave-damping and wave-resistance components.
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