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When moving a body in an inviscid nonhomogeneous incompressible fluid the stratification
influence on the resulting hydrodynamic loads comes through variable hydrostatic forces, addi-
tional forces caused by energy consumptions for generation of internal gravitational waves and
a synchronous response of fluid to the external influence, i.e. the non-gravity fluid reaction.

This paper is concerned with a uniform vertical motion of a slender body of revolution in
the infinite fluid with the density distribution as pycnocline. The sharp pycnocline is simulated
by the two-layer fluid and the smooth one by the three-layer fluid. The body is supposed to
approach the pycnocline from a great distance, and after crossing the pycnocline to recede up
to a great distance, the velocity being kept steady throughout. The problem is solved both with
regard for the Boussinesq approximation and without it. At the latter case, the load arised
from moving the body in the non-gravity fluid is also defined.

The linear problem on hydrodynamic disturbances generating in the stable stratified fluid
at the body motion may be solved by the numerical methods based on using a solution for a
point source. Let us consider the undisturbed infinite fluid at rest and its density distribution
being given by the function po(2) , where the axis z is directed vertically upward. The system
of equations describing small motions of this stratified fluid given the mass source of strength
poQ(x,t) in the system of the Cartesian coordinates x = (z,y, z) takes the form
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u,p—0 (x| —=00), u=p=0 (t=0),

where u = (u,v,w),p,p are disturbances of the velocity vector, pressure and density, due
to presence of mass-source, g is the gravitational acceleration, and the prime indicates the
differentiation with respect to z. For the moving point source Q(x,t) = ¢(t)é6(x — Y(?))
(¢(t) = 0 if t < 0), § is the Dirac delta-function, Y(¢) = (v1(t),y2(t), y3(t)), x = Y(¢) is the
path of source motion.

The system of equations (1) may be reduced to one equation for the vertical velocity w(x,t)
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(2)
where A, = 0%/0z% + 8%/0y?, N(z) = /—gpb/po is the buoyancy frequency. All the other
variables may be expressed in terms of w by the relations following from (1), in particular, the
pressure, calculated without considering hydrostatic forces, is equal to

P = polz (%(Q'u—) - Q). (3)

For solving Eq.(2) the Fourier integral transformation into horizontal variables and a time
are used. The equation for the Fourier transform of the vertical velocity w. is

(pow’)' — pok?*(1 — —g,;)w* = (po@Q.)', w«—0 (|z| = o0), (4)




of which solution is written by the Green function G(k, z, £,w) satisfying the equation
2 N?
(PoG')' = pok*(1 — 7)G=6(z=¢), G0 (|z] - o0). (5)

Following [1], the function G may be represented as the sum of two terms G(k, z, ¢ yw) =
Go(k,z,£) + Gi(k, z,€,w), where Go(k,2,£) = limy_.co G(k,z,{,w) is independent of w and

provides a solution of the equation
(P0Gy)' = pok?Go = 6(z —€), Go— 0 (|2 - o). (6)

The function Go determines an instantaneous part of the fluid response to the external action
and describes a part of the disturbance field carrying away by moving source and corresponding
to a non-gravity fluid, i.e. a zero vector of the mass forces F in (1). The remaining part
Gi(k, z,€,w) is a lagging response and describes the internal waves localized nearby the variation
density levels. The function G is a solution of the nonuniform equation
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=5P0N?Go, G =0 (|2 = o). (7)
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The solution of this equation can be represented as a expansion in terms of eigenfunction of

the following eigenvalue problem
N2

(PoWa')' = pok*(1 = =)W =0, Wo =0 (Jz]) = co). (8)

The spectrum of this problem w?(k) is positive and discrete provided that the function

N(z) differs from zero only in finite interval with respect to z. The eigenfunctions W, (z) are
orthogonal and normalized as follows

| pe@N )W)z = 1. 9)

The system of eigenfunctions is complete in the set of functions vanishing as |2| — co . As a
result the solution for G, is given by
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Since the Green function is divided into two parts, the pressure obtained by the inversion
Fourier transforms has the form p = py + p; . The term py describes the pressure disturbances
in non-gravity fluid and vanishes as the source is shut down

(1) = 20 [qm I dulkr(e) Mz, 3500 ] M(.6) = polO) Gz +6(:-8). (10
The term p, is the wave part of pressure:
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where 7(¢) = [(z — v1(¢))? + (v — ¥2(¢))*]2, Jo is the first kind of the Bessel function of zero
order.

In a weakly stratified fluid we can introduce the Boussinesq approximation, where the
variation of the density from some constant value, for example p, = po(0) , takes into account
only for the buoyancy term in the equation of the momentum conservation (1). In the inertia
term the real density is substituted by the value p, . In this approximation Eq.(2) takes the

form: 5 03@
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with the buoyancy frequency is now equal to N(z) = {/—gps/ps and A is the 3-D Laplace
operator. In the relationships (3-9) po(z) should be replaced by p,. In this case Eq.(6) has
a simple solution corresponding to the homogeneous fluid Gy = — exp(—k|z — £|)/(2psk). On
integrating (10) the well-known result for the infinite homogeneous fluid is obtained po(x,t) =
(ps/47)0(q(t)/r1)/0t , where r1 = [r(t) + (2 — ys(t))*]'/.

Furthermore, the uniform vertical motion of the constant strength source at the velocity
U is only considered. It is convenient to make a time shift. The instant at which the source
coincides with the origin of coordinates is taken as an initial time. Then the source path has
the form y;(t) = y2(t) = 0,y3 = Ut,r? = 2?2 4 y® and the flow becomes axially symmetric.

As known the axially directed motion of the slender body of revolution into the infinite
homogeneous fluid can be simulated by the motion of singularities located continuously on the
body axis. Let in the moving coordinate system z; = z,y; = y,2; = z — Ut the body surface
be given by r = f(z;). Denote a half-width and half-length of the body by a and b respectively,
for the slender body a/b < 1. The singularity system equivalent to this body has the following
distribution over the interval |z1| < b: ¢(z1,t) = —=27U f(21)f'(z1) = ~US'(z1), where S = 7 f?
1s a cross section area.

The total pressure in fluid due to the motion of this singularity system is equal to

b
P(r,z,t) = [_b q(s,t)p(r, 2,t, s)ds,

with substituting ¢(¢) = 1,y; = y2 = 0,y3({) = s + U( in Eqs.(10),(11) for po and p;.

The vertical force R acting on the slender body is found by integrating the pressure over the
body surface. Without introducing the Boussinesq approximation the vertical force is defined
as the sum of two terms R = Ry + R; , the former corresponds to the motion of body in a non-
gravity fluid and the latter describes the wave effect. Under the Boussinesq approximation the
vertical force is determined only by the wave component of the point source pressure because
of the resistance of the translating body is equal to zero in the infinite homogeneous fluid (the
d’Alembert paradox).

The simplest example of a stratified fluid is the two-layer fluid. The upper layer of the
density p, occupies the region z > 0 and the lower one of the density p; = (1 +¢€)p1 (¢ >
0) occupies the region z < 0. The particular case of this fluid with ¢ — oo is the infi-
nite homogeneous fluid with the free surface. By [1] the solution of Eq.(6) is Go(k,2,£) =
- [e""z‘f’ - 7sgn{e"‘("|+'5|)] /(2kpo(£)), with 4 = £/(2 + €). The eigenvalue problem (8) has a
unique solution and there is a wave mode alone in this fluid

Wi = e/ /25p,, w1 =1/gk, G=79, ps=p(2+¢)

The forces acting on the slender body moving into the two-layer fluid are
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In the three-layer fluid the undisturbed continuous distribution of density has the exponen-
tially stratified intermediate layer |z| < H with po(2) = p,e~** and the homogeneous upper and
lower layers.The buoyancy frequency differs from zero only in the intermediate layer wherein it
is the constant value N = ,/ag. In this case Eq.(6) has constant coefficients and an analytic
solution. Eigenvalue problem (8) has been studied in detail in [2].

Without introducing the Boussinesq approximation the final solution for the three-layer
fluid is

Uz b
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Under the Boussinesq approximation expression (13) for the wave component of vertical
force is rather simple:

Ri=-— UNzw/s' dn/ S'(¢ dg‘/ / J"kf("

n=1

WA, (¢ + UT)Wi(n + Ut) coswp(t — 7)dk, U,(¢) = /f; e Hs=Clsgn(s — )W (s)ds. (14)

For the slender body in Eqgs.(13),(14) the Bessel function may be approximately taken as 1 .
Three bodies with different shapes are taken for numerical computations:

f(z1) = ayJ1 — 22/b2 (B1), f(21) = acos(rz1/2b) (B2), f(z1) = a(1 + cos(721/b))/2 (B3).)

(15
The spheroid Bl is the blunt body. The body B2 has an acute angle at the top and the body
B3 has a zero angle.

The body shape selection in form (15) along with simple models of density distribution
allows some of the integrations in (12)-(14) to be carried out analytically. The expressions
obtained are reduced into double integrals. The components Ry and R; of the vertical force in
the two-layer and three-layer fluid are determined. The influence of body shape, body velocity,
pycnocline depth, and density difference in the pycnocline on the lift force are studied.
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