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Introduction

The solutions of the boundary integral equations, with the free surface Green function, suffer from the
effect of ‘irregular frequencies’ when a body intersects the free surface. The irregular frequencies are
a set of infinite discrete resonance frequencies of the nonphysical interior flow where the formulation
breaks down. In a discretized problem, the effect appears as a numerical error over the substantial
frequency band around the irregular frequencies resulting from the bad conditioning of the linear
system.

Despite this defect of the formulation, the ‘panel method’ has been widely used for the analysis of
three-dimensional wave-body interactions without much attention to the correction of the irregular
frequencies effect. In general, the irregular frequencies are higher than the frequency range of practical
interest of typical sea spectra. Interpolation of the numerical results may be possible when the
solution is smooth in frequency, since the frequency band of the ‘polluted’ solution can be reduced
arbitrarily with increasing number of panels. However there are several applications where it is
essential to remove the effect of the irregular frequencies. For vessels with a large waterplane area,
such as barges, the irregular frequencies may be within the range of practical interest. In multiple-
body interaction, it is necessary to distinguish the physical resonance frequencies from the irregular
frequencies. The effect of the irregular frequencies is particularly detrimental to second order solution
for structures such as tension leg platforms, due to the density of the irregular frequencies over the
sum-frequency range.

Various methods have been used to suppress the effect of the irregular frequencies. We apply three
of these methods and compare the robustness and efficiency of the methods in connection with the
low-order panel method.

Modifled integral-equation method

Lee and Sclavounos [1] showed that if Green’s integral equation and its normal derivative are com-

bined in the form
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there are no irregular frequencies when the complex constant o has a nonzero imaginary part.

The accuracy of the numerical solution of (1) depends on the value of the imaginary part of a. If this
value is too small, the irregular frequency effects are not completely removed. On the other hand, if
the value of the imaginary part of a is too large, numerical errors are introduced due to the fact that
the additional integral equation associated with the normal derivative is of the first kind. One can
find numerically the optimal value to minimize the latter error but a substantially larger number of
panels is required to achieve the same accuracy as in the unmodified integral equation.
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Modified Green function method

When the field point is on the body boundary S, or on the interior free surface S; inside the body,
Green’s integral equation has the following forms :

o) + / / e)aG("'f a= [ / a“’“ @) ix;e)de  xe 8, (2a)

/ /S (f)aG(s’ dt = / ‘3"(5 G(s; €)de s €S, (2b)

Green’s integral equation (2a) does not have irregular frequencies when it is combined with equation
(2b) or its spatial derivative for one or more points s in the interior domain. In equation (2b), s
should not be on the nodal points of the eigenmodes. In the usual discretized problem, (2a) and
(2b) are an over-determined system, and the rectangular matrix of the linear system is less efficient
to solve than a square matrix.

The modified Green function of Ogilvie and Shin {2] can be obtained by adding (2b) or its spatial
derivatives with the multiplication factor ¢G(x,s) to (2a) and setting the point s at the midpoint of
Si. We have tested this modified Green function method for bodies with two planes of symmetry,
with s at the midpoint of S;. Our numerical results [3] indicate that the irregular frequencies can be
removed, but the value of ¢ depends on the mode of motion. Also the range of ¢ is very restricted
if an iterative solver is used due to the poor conditioning of the linear system. For arbitrary bodies
the optimum location of the point s is not obvious.

Extended boundary condition method

Following Kleinman (4], one may extend the bounda.ry to include §;, where the normal direction
points downward:
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The complete derivation of the above equations and proof of the uniqueness are provided in [4],
however the first term of (3b) is affected by an erroneous jump condition on S; in [4]. This is corrected
in (3b) following the derivation outlined in the Appendix, and in more detail in [3]. Corresponding
equations for the source formulation are also derived in [3].

This method requires additional panels on .5;, so the dimension of the linear system increases. Numer-
ical tests indicate that the number of panels on §; can be much smaller than on the body boundary.
The required number of panels on §; increases with the order of the irregular frequencies. Using too
many panels on S; causes convergence problems with the iterative solver.

The Green function G(x;£) includes (in addition to the two Rankine singularities) a weaker log-
arithmic singularity which must be accounted for analytically in the second integral of (3b) when
the points x and ¢ coincide. An appropriate numerical technique which integrates the logarithmic
singularity analytically over each panel is derived in [5], and is used for the results shown below.

Numerical results

Numerical results based on these methods are presented in Figures 1 and 2 for a truncated cylinder
and a barge.

246




0.30 T Y T
1.700
0.20 1.650 |-
S_ 51.600
o o
0.10 |- 1.550
1.500
iy 210 a|o 4lo 5Io e|o 7?0 her ?-10 slo 0Io sio
Ka Ka
040
0.30 |
% onf
<
0.10 |-
0.00
1.0
Figure 1 — Surge added-mass coefficients and Figure 2 — Heave added-mass coefficients and
Haskind exciting force of a barge(L/B=2,B/T=2). Haskind exciting force of a cylinder (R/T=2).
The number of panels on the body is 4  96. The number of panels on the body is 4 * 80.
Methods: (- - - -) original Green’s integral equation.
(-==-- ) modified integral equation method, a = 0.2.
(- + = - -) modified Green function method, ¢ = 0.02 in Figure 1, ¢ = 0.3 in Figure 2.

(

) extended boundary condition method. The number of panels on S; is 4 x 8
in Figure 1, 4 * 16 in Figure 2. '
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Appendix
Equations (3a) and (3b) are derived by adding to (2a) and (2b) the following pair of integral equations:

[] /0%E0u s es (o)

—47p(x +// BG(x, df 0 | x€S; (4d)

Our objective here is to show that there is no nontrival solution of (4a) and (4b).

First it is important to have the correct limiting behaviors of the normal derivatives of the Green
function when £ € §; and x — S;, and these are
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Next define the potential ¢_(x) inside the body V_ due to the dipole distribution of density ¢(x)

on §;:
6-(x)= [ / aG("’ 96(xi) 4 x€V. (1)

This potential is defined throughout the domain msxde the body. Since it is continuous as the field
point approaches S,, we obtain

b(x) = / / BG(X’ 9G(xi€) 4 x € S, (8)

Now consider the limiting behavior of ¢_(x) as x — S;. From (5) it follows that
é_(x) = // aG("’f)df x€ S (9)

Before evaluating the normal derivative of (7) as x — §;, we can use the free surface boundary
condition to rewrite (7) in the form of a source distribution. Differentiating this expression and
using (6), we get:

Il(ai;n(x) = —4mp(x) + ‘//s‘ BG(x, Od{ x € S; (10)

where the integral should be a principal value. Since both z = 0 and { = 0 in (10), and since the
integral in (10) excludes the point where (6) is singular, the free surface condition 8G(x;¢)/dn¢ =
3G (x;€£)/0ny can be used now to replace the above normal derivative as follows:

It is now easy to show that there are no nontrivial solutions of (4a) and (4b). From (4a) and (8),
¢ (x) satisfies a homogeneous Dirichlet condition on §;, and from (4b) and (11), #_ (x) satisfies a
homogeneous Neumann condition on S;. Since (7) is a harmonic function in the interior of the body,
with these two homogeneous boundary conditions, it must be zero everywhere inside the body, and
thus the integral in (9) is zero. Since the same integral is in (11), it follows that ¢(x) = 0.
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DISCUSSION

Kuznetsov N.: Is there any relation between ¢ on S; and the solution ¢ of the original
problem in your third method?

Lee C.H.: No.

Clement A.: I have experienced a method similar to your second method in 2D seakeep-
ing computations. It consists in forcing ¢ to be null at one or more points located on the
inner free surface S;. If you choose a point at a short distance of the body surface S;, the
first irregular frequency is pushed away in a high frequency range, where we never have to
solve the problem, in least at first order. The method is cheap and works well, in 2D.

Lee C.H.: Thanks for your comment. We are trying to remove the effect in a higher
frequency range in sum-frequency problem.

Ando S.: Based on your experience, how would you rank the three methods (M1, M2,
and M3) in terms of the ease of numerical implementation?

Lee C.H.: It is difficult to rank the easiness. I would rather point out the difficulties
which may be encountered in numerical implementation. They are evaluation of the double
normal derivative of the Green function on the body surface (M1), double spacial derivative
of the normal dipole on the free surface (M2), robust treatment of the log singularity of
the Green function on the free surface (M3), respectively.

Bingham H.: The fact that the condition number becomes uniformly large in your
method #1 seems to explain the departure of these calculations from the unmodified
computations away from the irregular frequencies. I was surprised then to see the same
behavior of the condition numbers in methods #2 & #3, where the calculations are very
close to the unmodified ones away from the irregular frequencies. Can you explain this?

Lee C.H.: The condition number, including the sensitivity of the linear system, is the
upper bound of the amplification factor of the input error which arises from various sources.
Both the magnitude and direction of the input error affect the behavior of the solution and
the full account of it may require detailed analysis of the linear system. However we may
roughly say that the input error in method 1 (the modified integral equation) is larger,
due to the direct evaluation of the hypersingular integral, than those in methods 2 and 3
and thus method 1 shows largest departure of the solution from the unmodified original
solution over the frequency range.
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