RESONANCES OF THE 2-D NEUMANN-KELVIN PROBLEM
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Introduction.

We are concerned with the linearized 2-dimensional wave resistance problem, i.e., the pertur-
bation of a uniform flow by a fixed rigid body located on the free surface of the fluid. Our purpose
is to study how the wave resistance depend on the velocity of the flow, and to determine the local
extrema of this function.

A similar question arises for the sea-keeping problem (without forward speed): the determi-
nation of the frequencies of the incident wave for which the energy transmitted to the body is
maximum. These “resonant states” actually are the traces of complex singularities in the plane
of complex frequencies (see e.g. [1]). Indeed, the sea-keeping problem can be extended meromor-
phically to complex values of the frequencies: the poles of this extension are referred to as the
“scattering frequencies” of the problem. ,

Our aim is to show that the same holds for the 2-D Neumann-Kelvin problem and to describe
how to extend it to complex values of the flow velocity. Contrary to the sea-keeping problem
(or other scattering problems, see [4]), this extension cannot be performed by a simple analytic
continuation of the Green function : this follows from the anisotropic asymptotic behaviour of the
solution at infinity. The method we propose is based on a decomposition of this solution into two
parts (see Kuznetsov and Maz’ya [2]): a travelling plane wave and the solution of an auxiliary
problem of scattering type. The extension of the Neumann-Kelvin problem then amounts to that
of the auxiliary problem, for which classical techniques can be used. We show that the resonances
of the Neumann-Kelvin problem (i.e. the poles of its extension) are on one hand the scattering
frequencies of the auxiliary problem and on the other hand, the zeros of a “passage coefficient”
related to this latter problem. '

1. The 2-D Neumann-Kelvin problem.

Consider a fixed rigid body placed on the free surface of a uniform flow of a perfect fluid. The
system at rest is characterized by the fluid domain 2 and the immersed part B of the body. The
depth is assumed infinite ; the boundary 9Q of § consists of the free surface F'S (located at z = 0,
where (z, z) are the horizontal and vertical coordinates) and the hull ' of the body. We denote by
n the outwards unit normal on 9.

The uniform flow is defined by its velocity potential Vo,z where Vi is assumed positive. The
perturbation of the flow due to the body is characterized by the perturbed potential ¢, which
satisfies
[ (a) Ap1 =0 in 9,

(b) 82¢1 +vdnp1 =0 on FS,
(¢) lim Vg1 =0

Z e — OO
(P1) § (d) Onpr=g onT,

(e) Ozp1(S2) - u/rng‘ =0,p1(51) =1,

® im0

\

where v ’s proportional to V2, the function g (defined on I') and the real number r are the data
(the first equality in (e) shows the conservation of mass flow between upstream and downstream).
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Our purpose is to show that the solution operator associated with problem (7;) (i.e., the
operator which maps the datum (g,r) onto the solution ¢;) has a meromorphic extension in the
complex v—plane. As mentioned above, this extension leads us to introduce an auxiliary problem
(P2) of scattering type, which is obtained from (P;) by replacing the asymptotic condition (f) by
a radiation condition at infinity (in both directions z — +o0) : for a given datum (g, r), it consists
in finding a function ¢, such that

2 satisfies Eqgs. (a) to (e),
P2) { (1) Jim / 10,Vor — iv Vo |* dz = 0.
= Jiz|=R ,
In the sequel, we will use the following notations: W* = ¢“(*%i%) denote two plane waves which
propagate, respectively, in the directions z — %00, and ®* are the solutions of problem (P;)
for the data (—8,W=*,~8,W*(5,)) (they represent the scattered potentials associated with the
incident waves W¥). We thus have the following decomposition result (which is proved in § 2 by
a slightly different method from [2]):

PROPOSITION 1. Let ¢, be a solution of the auziliary problem (P2) for the datum (g,r).
Then, a solution of (P1) for the same datum is given by :

(1) P1 =y — Tf-l("?d_)’_)(w_ + ®7) where

(2) A‘(cp):z/(gpa w+ —(9,,90W+)df‘+ [(pa w -6,(pW+]

\

In (2), the notation [- - -] stands for the variation of a function between the two points S} and
S2. The physical meaning of A~(¢) is given below.

2. Proof of the decomposition.

First notice that for every complex number T, the function ¢, = ¢ + T(W™ + &™) satisfies
all the equations of (P;) save perhaps the condition (f) near z = —oo. The coefficient T must
be chosen such that this latter condition is also verified: ¢; will then be a solution of (P;) for
the same datum (g,r). In order to estimate the asymptotic behaviour of ¢;, we use an integral
representation formula. »

Consider the Green functions G;(M, P) and G2(#, P) of the Neumann-Kelvin problem (P;)
and of the auxilliary problem (P;). They are solutions of the following equations, respectively for
k=1,2:

( (a) ApGy(M,P)=ép(P) in {z <0},
(b) 82,Gk(M,P)+v0npGe(M,P)=0 on {z=0},
(c) lim_VrGu(M,P)=0

‘ lim VpGy(M,P)=0, ifk=1or
f) Tp—+4+00
( lim |8,V pG2(M, P) — ivV pGy(M, P)|* dzp = 0, if k=2,

\ R—o Jizp|=R
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where é57(P) denotes the Dirac measure at point M. Notice that G1(M, P) satisfies Eq. (f) near
ZTp = +0o whereas the solution ¢; of (P;) satisfies the same condition near z = —oo : this is
convenient for the expression of the integral representation formula.

These Green functions are unique up to a constant and are given by

elfl(zp+2m)~i(zp—2zp)

¢l - v

) Gi(M.P) = Zrlog (IPM][PM']) + =Py /L

+e(zP+2M)5in y(zp - Tr),

d¢

where M' = (zpr, —zp), “Pv” denotes the principal value of the integral, and
(4) G2(M,P) = Gi(M,P) + iWH(PYW~(M).

The asymptotic behaviour of G2(M, P) near z); = —oo is obtained by noticing that G3(M, P) is
symetric with respect to (M, P) (see [2]):

1
(5) G2(M,P) = - ~loglloM| + iIWHPYW~=(M) + o(|OM||™) as zpr — —o0.
Notice that from Eq. (4), we deduce the expansion of Gi1(M,P):
Gi(M, P) = ~Zlog [OM]| + o |OM[™) a5 aps — —co.

The following integral representation formula may be readily proved by classical techniques:
PROPOSITION 2. For k = 1,2, every solution ¢ of problem (Py) satisfies:

or(M) - = /F (9 Gk(M, P)pu(P) — Gi(M, P)dnis(P)) dT(P)

(6) ! <
+ =02, Ge(M, )pi(-) = Gu(M, )i ()]s, -

In order to determine the asymptotic behaviour of ¢,(M) near zps = —o0, we simply have to
substitute the expansion (5) of Go(M, P) near zps = —o0 in (6):

P2(M) = A7(p2) W™ (M) + o(lOM||7") as zp — —o0,

where A~ (¢, ) is defined in (2). This latter quantity is the coefficient of the outgoing wave W—(M)
in the asymptotic behaviour of ¢3(M) near zpr = ~o00. Remark that the component of the loga-
rithmic term is zero because of the conservation of the mass flow (Eq. (e)). Similarly, we have

W (M)+ @ (M)=(14+A"(27)) W (M) + o(]OM||) as zpr = —o0.
The quantity (1 + A~(®7)) characterizes the asymptotic behaviour at —oo of the total potential
of the wave W~ perturbed by the obstacle: this is the “passage coefficient” of W~ from +o0 to
—00. Finally, i
1= 2+ T(W™ +87) = (47 (g2) + T (14 A™(87))) W (M) + o |OM][™) a5 zps — —oo.
Since function ¢, is expected to tend to zero near —oo, this implies formula (1) in proposition 1.

3. Analytic continuation and resonances.
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We are now able to prove the meromorphic continuation of the solution operator of the
Neumann-Kelvin problem, i.e., the operator ’R(l") which maps the datum (g,r) onto the solu-

tion ¢ of (P1). In the same way, we denote by R(g") the solution operator of the auxiliary problem
(P2). According to these notations, formula (1) can be written again in the form:

47 (R(g,m)
1+ A7 (97)

(7) R (g,7) = RY (g,7) - (W, + ;).

It is sufficient to prove that each of the two terms in the right-hand side is meromorphic with
respect to v.

On one hand, since (P,) is a scattering problem, we know that the operator Rg") is meromor-
phic and that its poles have negative or zero imaginary parts. This may be proved by the same
arguments as those used for the sea-keeping problem (see [1],[5]) or Helmholtz equation (see [4]).

On the other hand, the two terms A, (Rgv)(g, r)) and
WS+ ) = W, + R (=0 W), —0: W)

are clearly meromorphic (because of the properties of 'R,(z")) and admits at most the same poles
as ’Rg"). The last term to be studied is the inverse of the passage coefficient 1 + A7 (®; ). This
coefficient is meromorphic so that its inverse is meromorphic. It is clear that the poles of the
inverse are the zeros of this coefficient. When this occurs, that is when 1+ Ay (®7) = 0, the
function W, 4 @; is a solution of (P;) with homogeneous datum (0,0).

We thus have proved:

THEOREM. The solution operator ’R,(l") associated with (Py) is a meromorphic operator valued
function of v. Its poles are .

o either the poles of R\", the meromorphic continuation of the solution operator ’R.g") of (P2)
to compler values of v,

o or the zeros of 1 + A7 (®7), the passage coefficient of (P;) for the plane wave W .
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