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Consider a body floating on the free surface of deep water and performing forced
harmonic oscillations of small amplitude at a radian frequency « .Under the wusual
assumptions of an inviscid, irrotational flow the problem may be described by a velocity
potential ¢ satisfying the Laplace equation in the fluid domain, the linearized free surface
condition, the body boundary condition and appropriate conditions at infinity. The most
popular method for solving this problem is to apply Green's theorem to ¢ and an
appropriate Green function G producing a Fredholm integral equation of the second kind
for the values of the potential on the body surface S. Letting P denote the field point and
Q denote the source point, we may write:
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where V(Q) is the prescribed velocity of the body and G(P,Q) is the usual wave-source
potential. :

As is well known, the integral equation (1) does not possess a unique solution at a
discrete set of frequencies-the so-called irregular frequencies-where the corresponding

- homogeneous equation has a non-trivial solution. The existence of the irregular frequencies

represents the most serious drawback of the boundary integral equation method and several
methods for removing them have been proposed ex. [1},[2],[3],[4]. |

A different approach to solve the boundary value problem for ¢ was proposed in [5].
A point in the interior of the body is selected and designated as the origin. Then the Green
function G may be expanded as: '
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where the coefficients a°,,(P) and the water wave multipoles ¢ m(Q) are defined in [5].
This approach leads to an infinite set of moment-like equations called the null-field
equations for water waves:
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It is possible to show that the null-field equations possess a unique solution at all
frequencies ([S],[6]). Furthermore the null-field equations have been used to solve radiation
problems in two-dimensions involving bodies of simple geometry such as a heaving ellipse
and a pair of circular cylinders.

In the present work, we seek to solve the integral equation (1) subject to the
conditions (3). Equation (1) is solved numerically using a panel method. In the usual
manner, the body surface is approximated by an ensemble of N plane quadrilateral elements
of constant potential strength. A collocation method is used resulting in an algebraic system
of N equations for the N unknown potential strengths. In order to eliminate the influence
of the irregular frequencies, these equations are supplemented by the null field equations
(3). If the infinite set of equations (3) is truncated after m=j=M, the result is an
overdetermined system which is solved by a least squares procedure. Using arguments
similar to [7] where an analogous procedure was adopted for the solution of exterior
acoustics problems, it can be shown that the interior potential ¢, and its first M derivatives
vanish at the origin. As a result, the solution is unique for wave numbers k < k,,,,

( ky.2 is the M+2 th irregular wavenumber). The present method is related to the
combined boundary integral equation method proposed in [4] where the solution of the
integral equation was supplemented by the requirement that the interior potential be zero
at certain interior points. The effectiveness of the present method stems from the fact that
it removes the arbitrariness in selecting the number and location of these interior points.
Instead, given an estimate of the location of the irregular frequencies, it provides a definite
rule for the number of extra equations that must be used to guarantee uniqueness.
Especially in the high frequency range where the number of nodes in the interior.
eigensolution increase,the present method is believed to have a clear advantage.
Preliminary results have been obtained for the hydrodynamic coefficients of a cylinder
a rectangle and a sphere with very little additional computational effort compared to the
original boundary integral method. In all cases considered, the performance of the metho
has been very good. ’
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Lee: (1) How do you solve the over-determined system and what is the additional computational
effort required? (2) How much variation of the solution did you observe when you added the
constraints, and when you increased the number of constraints?

Liapis: (1) Define by [e] the N+-M vector of error, then the task is to minimize [ex]7 [¢] with respect
to ¢1,¢z...¢n (*denotes the complex conjugate and T the transpose). For the number of panels
used so far (< 100) the additional computational cost is very small. (2) For the cases examined so
far, away from an irregular frequency, the solution to the boundary integral equation also satisfies
the nul field equations, so adding the constraints has little effect.

Grue: In solving water wave problems for bodies, for which one does not necessarily know the
irregular frequencies, a tool which gives precise and efficient answers for all frequencies is desired.
Is your model predicting the forces, etc. with good accuracy for frequencies far away from the
irregular frequencies, and what is the extra cost with your method compared to the conventional
panel method?

Liapis: For the cases examined thus far (that is a floating hemisphere, a right circular cylinder
and a variety of 2-D cases which I did not have time to present) the present method gives accurate
results for all frequencies. As a result, given an estimate of the (M + 2)** irregular wavenumber
K42, the present method will give accurate results for K < Kjr42. The extra cost comes from
solving a system of N + M equations with N unknowns as opposed to a N x M system and
evaluating N M extra influence coefficients. Although it is still very early to give a precise estimate
of the extra CPU time required, the CPU for the modified method should not exceed (N + M)/N

as a percentage of the original method.

Martin: Have you tried incorporating your extra constraints (M, say) by using M Lagrange
multiplies (rather than least squares)? This method has been used in acoustics for Schenck’s
method (as used in [4]) by A.F. Seybert & T.K. Rengarajan, ‘The use of CHIEF to obtain unique
solutions for acoustic radiation using boundary integral equations,’ J. Acoust. Soc. Amer. 81 (1987)
1299-1306. These authors claim that the method is superior to least squares.

Liapis: If you use M Lagrange multiplies you will augment your original system to an (N + M) x
(N + M) system. On the other hand, if you use least squares you will still have an V x N system
but the coefficients must be changed using formulas of the form 2{‘:’1” Ay Ay; 4,7 = 1to N.
It might be true that the Lagrange multipliers method has a slight edge, but this is going to be
significant only if a large number of panels and constraints is used.

Newman: In the discussion following equation (3) it seems surprising that M + 1 irregular fre-
quencies are suppressed by M extra equations. Is this explainable?

Liapis: You have corrected an oversight in my presentation where I should have used j + m =
0,1,...M that is M + 1 extra equations. In practice the method can perform much better because,
if say you use only one extra equation, you enforce ¢; = 0 at the origin (¢; is the interior potential).
Therefore in addition to the first irregular frequency for heave you also suppress all the irregular
frequencies for which ¢; # 0 at the origin. A similar argument can be used for more additional
equations where you also force the partial derivatives of ¢; to vanish at the origin.

Wu: To me, Equation (3) is a Galerkin method. Any complete series can be used to replace
7n (Q)-

Liapis: Equation (3) is not a Galerkin method but an infinite set of moment-like equations which

are derived using the series expansion (2) for the Green function. If you are not content with the

present multipole set ¢7,, (Q) you may choose another complete set of harmonic potentials satisfying

the free-surface and radiation conditions but I don’t see any reason for doing this.
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