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Introduction

The analysis of the flow past a lifting surface of zero thickness is essential in many potential flow
problems with or without the presence of a free surface. Classic examples are the thin wing theory
and the problem of a yawed surface-piercing plate. In the absence of a free surface, the Vortex-Lattice
Method (VLM) gives accurate results for the aerodynamic characteristics of a flat airfoil. The numerical
results for some typical lifting planforms can be found in works by Garner et al {1968) and Lan (1974).
Newman (1961) derived an integral equation formulation for a rectangular surface-piercing plate. Daoud
(1973) attempted to solve the integral equation numerically, but the numerical scheme didn’t converge.
Chapman (1976) used the slender-body approximation to solve the same problem, however, the effects
of transverse waves were not included. This paper presents a boundary element method for the solution
of the problem of a yawed rectangular surface-piercing flat plate.

Formulation
A uniform free-surface flow of velocity U past a flat plate at a small angle of attack « is considered.
It is assumed that the flow is incompressible and irrotational except for a sheet composed of the lifting

surface and its wake. It follows that the potential ¢ satisfies the Laplace equation in the fluid domain
V.

V3 =0 (1)
the body boundary condition on the linearized body surface Sp:
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on y = 0 or Sy; a bottom condition:
% _ 0 as y — oo (4)
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and a radiation condition at infinity. In addition it is necessary to impose the Kutta condition at the
trailing edge, and the condition that the pressure is continuous across the wake Sy,. Defining a field
point p = (z,y, z) and a unit singularity point ¢ = (£,7,¢), the Green function corresponding to the
above boundary value problem can be written as

Gloa) = 7 = =+ H(p.d) (5)

where 7 and rq are, respectively, the distances from a field point to the singularity point and its image
above the free surface, and the H function represents the free surface effects. Using the Green’s formula:

drd(p) fpeV;
// (G’-g‘}—s— %—g-¢)ds={27r¢(p) if p on Ss; (6)
v n n 0 elsewhere.
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and applying the boundary conditions on the free surface, the bottom, and at infinity, the potential ¢ is
readily expressed by

= _-// [¢($1’710+) ¢(€;'), )] ‘—r‘L" ds (7)
Letting m(&,n) = ¢(&,7,07) — #(£,7,07), and imposing the boundary condition on the body surface,

we obtain . ) -
Tar fim 5;_//;“5‘” m(€,n) 5 d¢dn =U'n )

which is an integral equation of the first kind for m(¢,n). From equation (7), the potential of the flow
is expressed in terms of the unknown dipole strength distributed over the lifting surface and its wake,
which can be found by solving equation (8). As indicated by Burton (1971), the difficulties sometimes
associated with this type of integral equations do not arise with equation (8) to any marked degree
because of the singularity of the kernel at p = ¢. In the present work, the solvability of the integral
equation is considered by studying the corresponding linear system of equations.

Numerical solutions

To solve equation (8) numerically, the domain of the lifting surface and its wake is discretized
into quadrilateral panels with constant dipole strength. Imposing the conditions at the trailing edge and
the wake, the unknown dipole strength in the wake can be related to those within the lifting surface
Sp. Thus, no collocation points were introduced over the wake surface S,,. If the lifting surface and its
wake are divided into M sections vertically, and N + N, segments longitudinally, the discrete form of
the integral equation is

1 M

N
—_— - [;m_n zh_?(l) 9z /:/. G(p;,q],) dfdﬂ

N+Ny
+ Z m;N lim — /f G(Ph‘bt) dedﬂ] = (U : n)l (9)

20 3z
1=N+1

where [=1---N;. Ny = M x N is the total number of collocation points on the lifting surface. Equation
(9) can be written in a standard form of a linear system of equations:

[A]{m} = {6} ' (10)

where {A] is a N; x N, influence coefficient matrix. {m} is the N;-vector of unknowns. {b} is a known
N,-vector.

Unlike the VLM formulation, the solution of equation (8) does not have the square-root-type of
singularity at the edges. However, the singularity in the kernel of equation (9) should be accounted for
carefully. Several different ways of discretizing the lifting surface were examined and compared. For
different forward speeds, three cases were considered:

(i) The Zero Froude Number Limit:

When the forward velocity is vanishing (F,, — 0), the linearized free surface boundary condition
tends to 3¢/3y = 0. The Green function becomes G(p,g) = 1/r + 1/ro. This limiting case is equivalent
to a lifting surface of twice the aspect ratio moving in an unbounded fluid domain. Thus, the results of
this limit case are comparable with those obtained by VLM for the same planform.

(ii) The Infinte Froude Number Limit:
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If the forward velocity is infinite, the free surface boundary condition becomes ¢ = 0. The Green

function becomes G(p,q) = 1/r — 1/ro. In this case there is an image lifting surface above the free
surface with a negative angle of attack of the same magnitude.

(iii) The Finite Froude Number Case:

In this case, the Green function takes its general form, 1.e. a Rankine pair, a double integral
which represents a symmetrical non-radiating disturbance, and a single integral which accounts for the
far field waves. In order to evaluate the influence coefficient matrix {A] in this formulation, the transverse
derivative of the Green function is needed. Based on the analysis of Newman (1987a,b), the evaluation
of the derivatives were derived and programmed with an estimated accuracy of 5 significant digits.

To ensure the accuracy and dependablity of the numerical results, the condition number of the
linear system of equations was evaluated, and the convergence of the numerical solutions was examined
by either of the two criteria, (1) by refining the grid mesh, the solution should converge to the same
limit for a given Froude number; (2) the agreement of the near field and the far field induced drags. For
zero and infinite Froude number cases, both criteria were used. However, for simplicity, only the first
criterion was employed in the finite Froude number case.

Results and Conclusions

For the zero Froude number case, the numerical results of the present methods show quantitative
agreement with the results by VLM. The convergence of solutions is improved in comparison with that
of a conventional VLM. For the infinte Froude number case, results also converge. For the finite Froude
number case, a lifting surface of aspect ratio of 0.5 is selected to do the test computation. The lift force
coefficients show qualitative agreement with the experimental results reported by Van Den Brug (1971).
The numerical solutions converge at high panel density (For the test case, in order to resolve wave effects
the longitudinal panel density over the lifting surface should be 20 panels per wave length or more for
panels with constant dipole strength). The local convergence near the leading edge is better than the
global one. The distribution of the strength of the leading edge singularty is elliptic like, which vanishes
at the free surface and the lower tip.

Cosine spacing near the edges was found to be necessary to account for the lifting effect. An
appropriate combination of cosine spacing near the edges and constant spacing in-between may help in
obtainning reliable results with limited number of panels.
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DISCUSSION

Tuck: 1) This paper is 91 years overdue! It is the anti-symmetric
equivalent of Michell's (symmetric) thin-ship theory, and the
authors are to be congratulated for their efforts on a very
fundamental and very difficult numerical task. 2) The curve of C(y

versus F, seems very jagged at low F, and is not continued to
the (known?) limit at Fp=0. It should "obble" like a wave

resistance curve (maybe?). Also, what is the graph of (total) drag
versus F?

Xu & Newman: Thank you Prof. Tuck. As F, decreases, the number of

panel segments in longitudinal direction increases in proportion to
F, in order to achive the same accuracy as in high F,. Within the

capacity of our VAX 750. We only compute to F,=0.3. That's why the
Cy curve didn't continue to the zero F, limit which has been
calculated. Since we didn't use curve fitting to process the compu-
tational results, the C; curve appears not so smooth. This may

help us to compare the numerical results with the experimental
ones. Before we do the computation for Fp<0.3 it is very hard for

us to guess the shape of C; curve in that F, region.

The total drag Cg can be easily evaluated in terms of and
(both are computed) by the fbllowing formula:

Cd = CL Ot—CT
at a given Fq,.

Yeung: In the results you showed in comparison with the experi-
mental measurements of Van den Brug et al. (1971), it appears that
satisfactory agreement occurs mostly in the high Froude number
regime. Values at more practical Froude number are substantially
off. Since Chapman's results are known to do well in the higher
Froude number region, perhaps they should also be shown here for
comparison purposes and for assessment of the effectiveness of this
thin-surface theory.

Xu & Newman: From the results shown it is obvious that the present
results predict the trend of Cp curve (Cp vs Fp) well in the Fj
region as low as F,=0.3. This qualitative agreement assures us

the convergence of the present scheme. It will be interesting to
compare the present results with those reported by Chapman (1976) .
Since there is no numerical data available in Chapman's paper the
comparison between the two approaches was not made. Chapman's
approach works well in predicting the global results (e.g. Cp, Cp
etc.) but there aren't any results of force distributions available
from his paper. Besides, the method he uses doesn't allow one'to
study the behaviour of the singularity at leading edge which is one
of the purposes of the present work.
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