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We examine the resonantly excited longitudinal and transverse (respectively perpendicular and
parallel to the wavemaker) motions in a three-dimensional rectangular wave tank with a harmonically
driven wavemaker on one side. Depending on the length and width of the tank relative to the
forcing frequency and water depth, i.e., on the degree of longitudinal (synchronous) and transverse
(subharmonic) turning, the possible orders of magnitude of the longitudinal and transverse wave
motions relative to wave paddle amplitude are systematically considered. Specifically, the following
three sets of ordering can be identified:

wavemaker longitudinal wave transverse wave
case I Ofe) O(e/?) O(e%/?)
case II O(e) O(¢) 0(e'/?)
case III O(e) O(e'/?) 0O(e'/?)

where ¢ is the nondimensional amplitude of wavemaker oscillation normalized by the length of the
tank, and £ < 1.

Cases I and II correspond respectively to the well-known synchronous longitudinal forced-excited
and subharmonic transverse parametric-excited standing waves studied by a number of investigators
(e.g., Lin & Howard, 1960; Garrett, 1979; Miles, 1988) notably in deep water. Case III is new, and
involves large resonant longitudinal and cross waves of the same order of magnitude. In this case,
internal interaction or resonance between the two is also an important mechanism.

Synchronous Forced-Resonant Longitudinal Waves — Case I

If the excitation frequency of the wavemaker is approximately equal to a natural frequency of
longitudinal standing wave in the tank (say, the n-th harmonic mode), but the length-to-width ratio
£ is not close an integral multiple of 1/4, then only the longitudinal wave is resonantly excited by
the wavemaker. The appropriate asymptotic approximation for this case for the velocity potential ®
and free surface elevation ¢ are perturbation series in powers of €!/3. Choosing the long time scale
r = £2/3¢, and introducing a tuning factor for the excitation frequency, Q,/w, = 1 + ¢%/3),, where
(2, is the dimensional linearized natural frequency of the longitudinal standing wave mode, w, is the
dimensional frequency of the wavemaker oscillation, and A, is the detuning parameter. Carrying out
the perturbation systematically, we obtain at third order (O(e)) (in order to suppress the secularity),
an evolution equation for the complex amplitude A(r) of the velocity potential of the longitudinal
motion: 4 s

/‘z"é"*".zle‘zA"‘ - —‘.PGA2 * =Os (1)
dr 4
where u., I'; and § are functions of depth h and mode number n. The amplitude of the longitudinal
stationary wave and the stability of this response ares obtained readily from the evolution equation
(1) and compare favorably with the experiments of Lin & Howard (1960).

At a critical depth A*, T'; in (1) changes sign from positive to negative as the depth h decreases
and the longitudinal standing wave switches from a softening to hardening spring system. At A = h*,
I'; = 0 and the perturbation analysis above breaks down. Thus in the neighborhood of A*, we choose
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the magnitude of longitudinal waves as €!/®, and define the tuning factor as 2, /w, = 1 + /5],
Carrying out the perturbation analysis this time through five orders, we obtain a new evolution
equation which contains a quintic nonlinearity and is valid for | A — h* |< 0(€%/®) for A, < 0(1).

Subharmonic Parametric-Resonant Transverse (Cross) Waves ~ Case II

This is the case when the excitation frequency is close to a superharmonic frequency of a cross-
tank resonant mode while the longitudinal waves are not resonantly excited. Following the ex-
periments and analysis of Lin & Howard (1960) for the problem, Garrett (1970) confirmed that the
mechanism for cross-wave excitation is indeed parametric resonance by obtaining the linear Mathieu’s
equation governing the amplitude of the transverse waves. Recently, Miles (1988) used a Lagrangian
formulation and obtained a Hamiltonian system governing the slow modulation of the amplitude
of transverse waves. Accordingly, for 1/2 subharmonic transverse waves with order of magnitude
e}/2? we choose the long time scale r = et and define the cross-wave detuning parameter A, as
Qy/we = 1/2+ €Ay. The length-to-width ratio £ is assumed to be far from an integral multiple of
1/4 such that the longitudinal wave is not resonantly excited.

Carrying the perturbation procedure, and applying the solvability condition at third or&er, we
obtain an evolution equation for the complex amplitude B(r) of the transverse waves:

,;y%? + 142\ uy B — iBB* —iT,B*B* =0, (2)

where u,, I's and G are functions of A and £. The coefficient § of B* is the result of parametric
resonance and contains terms resulting from both the first-order (equivalent to Garrett’s linear result
obtained by averaging the longitudinal wave motion) and second-order (due to direct interaction
between the wavemaker motion and the transverse waves) wavemaker boundary conditions. Equation
(2) is isomorphic to equation (4.1) of Miles (1988) after a /4 phase shift of his complex amplitude.
The stationary solutions (and their local statbility) are computed and are again in good agreement
with Lin & Howard’s measurements. Again, we note that there exists A = h** where I'y(h**) = 0, and
the weakly nonlinear analysis described above breaks down. To obtain a uniformly valid description,
we expand ® and ¢ in powers of €!/* for h near h**, and carry out the perturbation analysis to
O(£%/4) resulting in a new equation with a quintic interaction term. »

Interaction between Resonant Longitudinal and Transverse Waves — Case III

When the excitation frequency of wavemaker is approximately equal to the natural frequency
of the longitudinal n-th harmonic standing wave and the length-to-width ratio £ is close to n/4 (for
first-mode cross-waves), the longitudinal wave is directly resonanted by the wavemaker while the
transverse wave is parametrically resonanted. Both waves are the same order of magnitude O(g!/2),
and interact with each other. To account for the two resonances which are involved at different
orders, two long time scales are introduced: 7, = €!/2t and 7, = et. The degree of tuning of the
wavemaker with respect the longitudinal and cross waves are characterized by 2, /w, = 1/2+ /22,
and Q. /Q, = 2 + /24, where A and « are the detuning parameters.

Carrying out the perturbation systematically through orders 0(¢*/2), 0(e), and 0(3/2), and
combining the solvability conditions at the second and third orders, we obtain finally two coupled
evolution equations governing the amplitudes of the longitudinal and transverse motions:

yigg tiveAd+ 6~ if, 424" —ifABB* =0, (3)
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and

dB . . % P . ~ o~
ui= +imB - ifB - if,B*B* ~iSBAA" =0, (

'S
~—

where the modulation of the forcing has been factored explicitly in A by letting A = /24¢"7*7, 4
and B are now considered functions of r; only, i.e., (8/9r,) + £}/2(3/3r;) — (8/0r); 1 = py =
4u, + O(e/?); Ya,b are functions of k, A, v, and ;  is a function of n, h, A, v and ¢; 3 is a function

of £, h, and e; I'; = 8¢Y/2Ty; ', = €!/T,; and £ is a function of A, £, n and e. Equations (3,4)
reduce to equations (1,2) in the absence of resonant (transverse,longitudinal) wave motions.

If we write A = Ca +1D4 and B = Cy + 1Dy, then equations (3), (4) can be represented as an
autonomous Hamiltonian system with the Hamiltonian ¥ given by:
IR P U PR
=2 6D, 274(0,, + D2) + 4I‘a(Ca + D?%)
1s 2 2 1 2 2 1< 2 22, lag oo 2 2 2 ®)
+58(Cy = D3) = 5w(Cy + D) + 7TW(C) + Di)” + 52(CE + DI)(CE + DF) |,

where C,, D, and C,, D, are conjugate variables which satisfy the Hamilton’s equations

dCas _ __OX dD,, X 5
dr 6Da,1,’ dr aca,b . ( )

Stationary solutions and their local stability are readily calculated for the evolution equations
(6). The bifurcation of the stationary solution amplitude varying with the excitation detuning pa-
rameter A changes abruptly around the intermediate depths, A = 1.5 ~ 1.9. While for h greater
than 2.5, the bifurcation diagrams are qualitatively all similar. The three-dimensional wave family
starts at the pitchfork bifurcation point on the two-dimensional longitudinal wave branch, where the
two-dimensional wave family loses stability and a pair of pure imaginary eigenvalues separate into
two pairs along the three-dimensional branch. For the cases of intermediate depths, the so-called
Hamiltonian-Hopf bifurcation occurs on the three-dimensional wave family. Stability of the three-
dimensional wave family is lost at such a bifurcation point where the two pairs of pure imaginary
eigenvalues collide in pairs again and then split into two complex conjugate pairs leaving the imag-
inary axis. Such bifurcations correspond to Benjamin-Feir instabilities in two-dimensional steady
progressive wave.

Numerical integrations are performed for the interaction equations (6). The results of temporal
simulations exhibit either regular (periodic and quasi-periodic) or chaotic behaviors, depending upon
the parameters and initial conditions. For the chaotic evolutions, two solutions with slightly different
initial conditions separate at an exponential rate, and small differences in initial conditions are
manifested at a later time by vastly different dynamical states. Such characteristic sensitivity to
initial conditions can be precisely quantified in terms of the Lyapunov characteristic exponent which
measures the mean rate of exponential separation of neighboring evolution trajectories. The scheme
suggested by Benettin et al. (1976) is applied to compute the largest Lyapunov exponent indicating
that the trajectories with finite exponents are indeed chaotic. Another characterization for regular
and chaotic behaviors is the power spectrum of the evolution amplitude. Power spectra of the
amplitudes obtained by fast Fourier transforms of simulated evolutions again confirm the occurrence
of chaotic motions.
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Resonance Overlapping as a Criterion for the Onset of Widespread Chaos

To understand the global behavior of the Hamiltonian system (6) in phase space, we construct
the two-dimensional first return map on the hypersurface £y of codimension one. Such a hypersurface
is known as a Poincaré surface of seé¢tion. In our problem the surface of section is chosen as

dc,
dr
On the surface of section, a fixed point corresponds to a periodic trajectory, successive points lying

on some smooth curves (invariant curves) belong to a quasi-periodic orbit, while those belonging to
chaotic orbit appear to fill a regime.

2){ = {(CaﬁDa)Cb)Db): Ca =07 > 0) )( = )((CG)CbSDG7Db;'\’h’£’n)}' (7)

According to KAM theorem (cf. Chirikov, 1979), for an integrable system, those invariant
curves with sufficiently incommensurate winding numbers persist under small perturbations. As the
strength of perturbation increases, neighboring resonance zones will interact and chaotic motion is
confined to a narrow regime around the separatrices bounding the resonance zones. As two resonance
zones grow and eventually overlap, invariant curves between them will be destroyed, resulting in the
onset of widespread chaocs. The method of overlapping resonance developed by Chirikov (1979)
postulates that the last invariant curve between two lowest-order resonances is destroyed when the
sum of the half widths equals the distance between the resonance centers. A major approximation is
that the width of each resonance zone can be calculated independently of all the others. This simple
criterion yields an estimate for the critical parameters governing the appearance of widespread chaos.

Applying the canonical transformation: 4 = i\v/21,ezp(i6,) and B = i\/2[,ezp(if,), where I,
and 0, , are action and angle variables, the Hamiltonian takes the new form:

H= )(() + )(a + )(b’
1 . - .
Ho = ;("'hla =l + Lal,® + Ts 1 + 281, 1),

~

]
H, = ;\/21,, cosf,, Hy = —%Ib cos &,

which consists of an integrable part ¥, and two nonintegrable perturbations ¥, and ¥, responsible
for the two primary resonances. Introducing two new resonant angle variables which change slowly
relative to other variables in the Hamiltonians, and averaging the Hamiltonians over the fast variables
we obtain the approximate resonant Hamiltonians. These two resonant Hamiltonians have exactly
the form of the pendulum Hamiltonian whose widths of separatrices can be calculated. From these
resonance widths we obtain the boundaries of resonance in the original action variables. In our
computations we find that the surface of section exhibits large widespread chaos regimes if the
resonance overlapping area is large.
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DISCUSSION

Evans: I should like to compliment you on your most impressive
paper. I believe this is the first time 'chaos' has been discussed
at these workshops fully 25 years after Lorenz's praper. There are
of course many areas of interest where it may arise, such as the
present wavewater problem, ship stability theory and models of
TLPs. The Faraday problem of vertically or horizontally forced
rectangular tank is clearly related to the wavewater problem. Have

you followed the many papers published recently in Phys.Lett. on
this problem? -

Tsai & Yue: We are certainly aware of and have benefitted much from
the many contributions of other workers on this class of problems.
Most of these are from the applied physics and aerospace community
~on the horizontal or vertical vibrations of tanks. The present
problem of a tank with a wavemaker is perhaps more akin to our
field of water waves and floating bodies. It is gratifying that for
this relatively simple problem, the solutions are every bit as sub-
lime and rich if not more so as those in other contexts.

Palm: You show that in your Hamiltonian system you.obgain periodic
motion, quasiperiodic motion and chaos by only verifying the
initial conditions. Don't you believe that this resu}t wogld be
radically changed by taking into account a (small) v1sc031ty?

Tsai & Yue: The results will certainly be very different %n the.
presence of dissipation. However, it seems clear that orbits Whlch
are now chaotic will still be chaotic although the converse will
not necessarily be true,.

Miloh: Being aware of the large effort and brain power put into
this paper I want to compliment you for an excellent presegtatlon.
Together with my colleagues Drs Kit and Shemer from thg Univ. of
Tel-Aviv we did some theoretical and experimental studies of non-
linear sloshing and cross waves in a relatively logg channgl. We
found that viscous wave damping on the wave maker is very 1mpor§ant
and should be included in the formulation on th§ ?orm of an ?ddl—
tional complex parameter in the non—linea; Schrodlnger equation.
Since your tank is relatively short I believe that in your case .
viscous damping will play a more important ;ole. As a result of the
dissipation the system will not be Hamiltonlgn any more. Can you
please make a comment on the possibility of incorporating damping
in your calculations? .

Tsai & Yue: We are aware of your work and the likely importance of
dissipation in these problems. If dissipation is to be modelled, a
small linear damping term, say, can be readily added to our evglu—
tion equations. Much of our computational analyses can be carried
out accordingly although the system is now more gompllcated. The
possible application of a resonance overlapplng'ldea to a weakly .
dissipative problem has intrigued us for some tlme.now, although 1it,
is still too early to give an answer to this question.
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