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1. INTRODUCTION

The wave resistance of a ship moving steadily in still water is generally cal-
culated from the potential flow about the hull subject to a linearized free surface
boundary condition (FSC). This may be either the Kelvin condition or a slow-ship
linearized condition such as that adopted by Dawson. Not much 1is known about the
adequacy of various FSC’s in practical applications. In the past Workshops on Ship
Wave Resistance Computations, differences between FSC'’s were obscured by numerical
errors. More specifically, a fair comparison between the FSC of Dawson and the Kelvin
condition was impossible, since the former was implemented using Rankine sources and
the 1latter using Kelvin sources, the two methods thus containing numerical errors of
an entirely different nature. The first objective of the present study is therefore,
to make such a comparison using exactly the same numerical method, such that differ-
ences are directly attributable to the FSC’s. This has been achieved by applying our
program DAWSON [1], without any change for the (corrected) Dawson condition, and with
the double body velocities replaced by a uniform flow for the Neumann-Kelvin problemn.

Secondly, it is desirable to collect information on the magnitude of the ne-
glected nonlinear terms as these indicate the adequacy of the linearization and drive
the iteration process necessary to solve the exact problem. In addition this may
provide some insight in the correctness of certain basic assumptions made in the
linearization of the FSC.

For lack of sufficiently detailed and accurate experimental data or solutions of
the exact nonlinear problem, in the present study the magnitude of nonlinear terms
has been derived from a posteriori estimates, using the flow field calculated with a
linearized method. Although of course not altogether reliable this method is easily
applied and gives information heretofore unavailable as far as known to this author.

2. RESISTANCE AND WAVE PROFILES

The test cases in this study were: the Wigley hull at Fn = 0.40; the Series 60,
Cb = 0.60 hull at Fn = 0.22 to 0.38, and the so-called "strut-like hull" [2], a full
form with vertical sides, an elliptic bow and a block coefficient 0.86, at Fn = 0.25
and 0.18.

For the Wigley hull, the Kelvin condition predicts.-a wave resistance coefficient
only 1% higher than the Dawson condition. This is not surprising since the double
body flow is almost uniform for this thin ship. Even so, at the 1979 workshop [3] all
Neumann-Kelvin predictions for this case, however scattered, were substantially
higher than the Rankine source and slow-ship predictions. More relevant is the com-
parison for the Series 60 ship. Figure 1 shows the vave resistance coefficient, com-
pared with some experimental data. It is evident that the differences between the
methods are totally negligible again, except perhaps above Fn = 0.32. Also the pre-
dicted wave profiles are in close agreement; the general tendency is, that the Dawson
FSC results in somewhat more pointed bow and stern waves. There is little difference
in wave amplitude. Both methods underestimate the bow wave height; othervise the
agreement with experimental data is fairly good.

For the strut-like hull, The Neumann-Kelvin solution predicts a 12% lower Cw.
This is not much difference in view of the considerable nonuniformity of the double
body flow for this full hull form. The Kelvin condition leads to significantly higher
vaves behind the stern in this particular case.
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3. NONLINEAR TERMS

To assess the validity of the linearized FSC’s, I have computed both the linear
terms included in the FSC and the neglected nonlinear terms. Now the prime difficulty
here is that the exact FSC should be applied at the actual free surface, not at the
undisturbed free surface y = 0. This was partially overcome by using Taylor expan-
sions for the transfer of the boundary condition to y = 0, just as is done in the
derivation of the FSC itself. However, the convergence of such expansions for the
short wave disturbance at low Fn is disputable.

The nonlinear terms can be formulated consistently, including only the contribu-
tions of leading order in the perturbation parameter, or inconsistently so as to ap-
proximate the exact FSC as closely as possible. For the strut-like hull at Fn = 0.25
this gives important differences, indicating a poor convergence of the perturbation
expansions. For the other cases the consistent and inconsistent forms give similar
results.

For the slow-ship FSC with the basic assumptiogs according to Eggers (see [1] for
a further discussion) the consistent terms of O(Fn ) are complicated expressions con-
taining third derivatives of the double-body potential. These are hard to calculate
and susceptible to numerical oscillations. Therefore, a simplified form was derived
by dropping the transfer terms connected with the double body potential. This is not
just a matter of convenience; it can be argued that the extension of the double-body
flov field above the undisturbed water plane, based on its assumed symmetry, only re-
duces the accuracy of the approximation, in particular for hulls with strongly flared
sections at the water line.

Ve now define the following decomposition:
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Here, terms 1 and 2 are normally included in Dawson’s FSC. Terms 3 and 4 are non-
linear contributions to the FSC, while terms 5 and 6 result from the transfer to
y = 0. Term 7 is neglected in Dawson’s FSC but should be added for consistency.

Similarly, for the Kelvin FSC the perturbation parameter is the wave steepness;
the consistent decomposition is:
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For the double body flow replaced by a uniform flow, the expressions for both FSC’s
become equal except n* and term 5. As a result, in the consistent form these
quantities are not completely comparable for both methods.
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Evaluation of these decompositions for all test cases of course generated a mas-
sive amount of data, only some of which can be included here. Concerning the linear
terms, we find that, compared with term 1, term 2 is only significant at bow and
stern. But, particularly for higher Froude numbers, there is a considerable phase
shift between n_ and h, and the derivative of n_ is often of the wrong sign; thus in-
cluding term 2" reduces the accuracy. The linegr, but neglected term 7 is generally
larger than term 2, and is, for the Series 60 hull, about 8 to 10% of term 1 at the
bow.

0f the nonlinear terms, the transfer terms 5 and 6 generally predominate. This
means that any method solving the nonlinear problem must apply the FSC right at the
true free surface, otherwise the most important nonlinear effects are missed or
poorly represented by unreliable Taylor expansions; a fact not properly recognised in
some of the methods proposed up to now.

The sum of the higher order terms (Figures 2 and 3), which indicates the accuracy
of the linearized solution, turns out to be of the order of 100% of term 1 locally at
the bow and stern wave crests in some cases, even though the wave resistance predic-
tion may still be fairly accurate. In general Dawson’s FSC leads to somewhat smaller
nonlinear terms than the Kelvin condition. This difference becomes more pronounced
for decreasing Froude number as expected, but is not quite decisive even at speeds
rather low in the practical range. At higher Fn, the increasing phase difference
between n_ and N is one cause of the loss of this advantage.

For relatively low Fn, the nonlinear terms become fairly small and suggest that
the slow-ship condition in its present form is correct for Fn » 0. On the other hand,
it has been argued [4] that the,perturbation has a short-wave character, so differen-
tiation reduces its order by Fn". I? that case, term 5 for instance would only be the
first of a series of terms of O(Fn“) (i.e. of the same order as term 1) and thus not
representative for the total error. From the results available however, we find that
term 5 decreases strongly relative to term 1 for decreasing Fn. We may have some con-
fidence that the derivation without order reduction does lead to an FSC that is accu-
rate in practice, if not asymptotically correct, for low Fn.

4. CONCLUSIONS

Summarizing, it turns out that the differences in predictions obtained with the
Kelvin FSC and the slow-ship FSC are far smaller than suggested by previous results,
if at least the numerical errors are made comparable. The main contribution of Dawson
seems to be the numerical treatment of the problem but not the particular form of the
FSC.

Although asymptotically, or in the close vicinity of stagnation points, one of
the FSC’'s may be better, in practical calculations the slow-ship FSC gives an at best
marginally better approximation of the exact FSC. Both conditions become more ade-
quate for decreasing Fn, and both have the same primary deficiency that they are
applied at the undisturbed instead of the actual FS.
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Fig. 1 Series 60, calculated wave resistance coefficients compared with experimental
data (Taken from [3}])
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on free surface panel strip along hull and centreline. Abscissa is panel number
(uniform panel length); bow and stern location indicated.
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DISCUSSION

Kleinman: Your results indicate that in many cases there is little
difference between the two linearized free surface conditions.
However your results also seem to support the conclusion that
neither is a good approximation to the nonlinear condition. Would
you comment on this?

Raven: As a matter of fact the magnitude of the nonlinear terms is
larger than one would expect from the relative accuracy of the
resistance and wave profile predictions. Apparently, some fortunate
cancelling of errors occurs that makes the predictions still use-
ful; on the other hand, estimating nonlinear terms from results of
a linearized calculation perhaps gives a too pessimistic result.
But the study does show that it is desirable to develop a method to
satisfy the nonlinear FSC.

Nakos: In slow-ship linearization of the FSBC the second
derivatives of the double-body flow are needed on the free-surface.
It is true, however, that close to the stagnation points (bow-stem)
these are singular (discontinuous). Can you comment on the error
induced by the numerical treatment of such discountinuity and their
share of contribution to the total error?

Raven: Thank you for raising this interesting point. What influence
the local behariour near the stagnation points, if well resolved,
would have on the resistance and wave pattern is not known to me.

The singularity in Tm,., that is present for angles of entrance
other than zero or =®/2 will perhaps analytically be eliminated by

a zero ¢,' 1in term 2, such that the linear terms are not too much

affected.

In practical methods this local behaviour is never resolved
because of the finite panel dimensions both on the hull and on the
free surface. In the present calculations up to 1300 free surface
panels have been used, but still the collocation points near the
stagnation points felt substantial nonzero double body velocities.
Even a reduction of the width of the first free surface strip from
0.29B to 0.16B for the strut-like hull resulted in a very modest
change of the results, e.g. 2% in the resistance, with Dawson's
FSC.

So I do not believe that the linear terms and the predictions
are much affected by the singularity in practice. The nonlinear
terms 5 and 6 could perhaps be somewhat more sensitive.

215




Ursell: The use of Taylor expansions near a boundary is based on
the assumption that the velocity potential can be continued into
the space beyond the boundary. This seems reasonable when the
boundary is smooth but cannot be strictly correct near corners and
edges, also near stagnation points where the slope is not small.
These form only a small part of the boundary, nevertheless Raven's

work shows that they may have a noticeable effect on the outcome of
his calculations.

Raven: Thank you very much for your comment. Perhaps I may add that
in linearized methods, the Taylor expansions are not only used for
analytic continuation of the potential beyond the boundary but also
to express values at points inside the domain, at y=0, in values
at the boundary y=n where mnN>0. Although strictly the Taylor
expansion must then converge for such points, at least away from
corners at the boundary, it is the linearization that becomes
invalid since higher order terms are of the same order of magnitude

as the first term due to the character of the perturbation poten-
tial.
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