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This presentation is concerned with the coupling of Eigenfunction expansion
techniques and the Rankine source based Boundary Integral Equation technique
to analyse different fluid-structure interaction problems. The 3D linearised free-
surface models are applied to situations involving rigid floating bodies in open and
confined waters.

Introduction

Hybrid methods of analysis describe those methods that employ different so-
lution techniques in two or more sub-regions of the solution domain. The general
approach is to exploit available analytic solutions in flow regions where the geome-
try is very simple. These special solutions generally satisfy, implicitly, the necessary
radiation condition. Computations based on this approach have been undertaken by
Garrett(1971) to predict the wave forces acting on vertical cylindrical structures. In
sub-regions where the geometry is complicated the finite element or the boundary
integral methods may be applied, as illustrated by Bettess & Zienkiewicz(1977),
Garrison(1978) and Hearn et al.(1987). The solutions generated in the different
sub-regions must then be properly matched across common boundaries by ensuring
continuity of both the pressure and the normal velocity components. The hybrid
approach has previously been investigated by Bai & Yeung(1974), Yue et al.(1978)
and Eatock Taylor & Zietsman(1981).

The method applied in this study is similar to that used by Yeung(1975)
and Bai(1981). The flow region is divided into an ”inner” and ”outer” domain
using a fictitious continuous cylindrical boundary for the open” sea problems, and

appropriate "up-stream” and ”down-stream” control surfaces for the ”confined” or

* Presented at Fourth International Workshop on Water Waves and Floating Bodies,
Oystese, Norway, May 1989.

89




“canal” flow problems. The velocity potential in the inner domain is calculated
using the boundary integral method based on a simple and frequency-independent
Rankine fluid singularity as the kernel of the associated integral equation. Replacing
the radiation condition, on the indicated control surfaces, by the stated matching
conditions, we use a single asymptotic eigenfunction expansion to represent the so-
lution in the outer domain for the open sea problems. For the canal problems two
sets of trial functions are required to represent the up-stream and down-stream fluid
flows. This approach leads to a significant reduction in computational effort because
the simple source velocity potential is frequency independent and thus the influence
coefficient matrix of the inner problem can be computed once. Furthermore, by
appropriate selection of the location of the matching boundary the velocity poten-
tial and their derivatives need only be evaluated once per frequency for all panels
considered. The resulting gains in the computational effort, in comparison to con-
ventional free surface Green function methods, is significant. This is because the

Green function method treats each frequency and panel independently.
Numerical Algorithm and Results

In generating the geometric model, flat triangular and quadrilateral panels are
used. Over each panel the velocity potential is assumed invariant. The boundary S
consists of the body wetted-surface,Sy,, the free surface, Sy, the seabed and side-wall
surface, S, and the matching surface, S,. For the two classes of problems under

consideration see Figures 1 & 2 for typical discretisations of the solution domains.

Applying Green’s second identity, the integral equation governing flow in the

inner domain can be written as

1 [1184(q) 91 _
¢(P)—EL{;W'—¢(Q)BM() dS(q) ... S=8u+S;+ S+ S

where, r denotes the distance between the field point p and the boundary surface
located source point ¢ and ¢ is the unknown velocity potential to be evaluated.
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The eigenfunction expansion used in the outer domain for the open sea prob-
lem is
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see Chau & Yuen(1986), whereas
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is used in the canal problems, see Bai(1981). Here h is water depth, W is the
width of the canal, and Ajp & A;; are the unknown coefficients to be determined by
satisfying the matching conditions. The parameter mg associated with the Hankel
function of the first kind, Hj, and the parameters m, associated with the modified
Bessel function of the second kind, Kj, are the real roots of

2 w?

w
motanh(moh) = 7 and - mjtan(mjh) = ——
g
respectively. For the canal problem the parameters Djy and Dy; satisfy

Do=lmi~(ZY1*  and  Dy=lm!+ ()Y

The discretisations for the open and the confined waters examples are illus-
trated in Figures 1 & 2. In Figures 3 & 4 the reactive hydrodynamic coefficients
for surge and sway are presented for the hemisphere in open water and the float-
ing barge in a canal respectively. These results together with the corresponding
results for first order excitation forces and moments, the response amplitude oper-
ators for each degree of freedom and the second order drift forces have been shown
to agree well with other published results. The indicated comparative studies are
sufficient to demonstrate the value and applicability of the eigenfunction expansion

techniques outlined.
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Discussion of Hearn and Liou’s paper

Discusser S.Ando

Could you expand on the criteria you used to determine the location of the radiation
boundary?

Authors’ reply

Rather than fix the location of the radiation boundary, the matching boundary really,
as a function of the wavelengths associated with the propagating or evanescent modes of the
interaction problem we have undertaken various numerical experiments. Thus in practice
one finds that as the matching boundary is brought closer to the wetted surface, so the
number of facets representing the free-surface and the sea-bed may be reduced and thus
more elements, and hence more coefficients can be used in the eigenfunction expansions.
For the hemisphere in open water we selected R/r = 1.2, where R is the radius of the
radiation boundary and r is the representative radius of the floating structure. However,
as Figure 3 shows, the results coverge quite well for R/r = 1.02 for the same eigenfunction
expansion, that is taking ! from -10 to 10 and j from 1 to 6 in the associated outer domain
series. For the canal problem the matching boundaries were set a distance 1.6L from the
centre of the barge, where L is the length of the barge. Here expansions for [ = 1 to 8
were used with 5 assigned the same values as for the open water problems.

Discusser R.Eatock Taylor

Grant, I don’t think you have mentioned the matching between the inner and outer
regions. Do you use a variational approach? Is the number of terms in the eigenseries
related to the number of panels in the discretisation (as well as frequency)? Treatment of
the number of terms is particularly critical in the channel problem. What procedures have
you used to validate your results, e.g. comparisons with other published results for wave
frequency and drift forces on a cylinder in a wave tank (Matsui, Eatock Taylor & Hung
etc.)?

Authors’ reply

Our method is based on the matching of an eigenfunction expansion of the outer
domain solution and the inner boundary integral representation of the nearfield solution.
The matching conditions imposed are those indicated in the abstract, namely

ér = do
and

9¢1 _ 9¢0

on  on’

where the subscripts I and O indicate inner and outer solutions respectively.

The number of unknown coefficients in the eigenseries is equal to the number of panels used
in the representation of the matching boundary. The choice of panel size on the wetted
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surface of the floating body and the free surface, in view of the invariance assumptions over
the panels, is governed by the wavelength associated with the highest frequency of interest.
These choices are independent of the location of the matching boundaries. However, the
nearer the matching boundary is located to the floating body the greater the number of
terms in the eigenseries. The number of times used in the tank problem is not particularly

critical. What is critical is the proper assignment of meaningful values to the coefficients
Dlo-

Validation of our predictions has been achieved by comparison with many other re-
searchers predictions. As indicated in my opening remarks the particular objective of this
study was to investigate how the presence of tank walls affected the predictions of second
order forces, so as to understand the differences between predicted and measured values
of low frequency damping. The validation has therefore consisted of validation of first
order forces, predicted first order motions and drift forces in open water situations using
the eigenfunction expansion technique. Thus for open sea problems we have used many
different sources which provide experimental measurements or theoretical predictions or
both. For the canal problem we have used Bai’s 1981 results for comparison of first order
quantities. Through comparison of open water barge drift force predictions and Pinkster’s
measurements we have validated barge drift forces and then used the canal related solu-
tions to appreciate the affects of both finite depth and tank walls. By allowing the depth
and width of the tank to increase we have also demonstrated that the canal solution readily
converges to the open water solution. However we have yet to use the particular references
you have cited.

Discusser R.W.Yeung

The eigenfunction expansion for the tank problem is not correct. The dummy index
| associated with the propagating modes does not exist for [ > (M-1), where Djy,, as
defined by the authors, would become imaginary. Similarly the sum for the evanscent
modes should start for {=M and go to co. This incorrect choice of eigenfunctions (Bai’s
expressions were correct, I believe) by the authors will lead to improper physics of the
hydrodynamics.

Authors’ Reply

Professor Yeung is thanked for identifying an important point which was neither dis-
cussed in the written form of the paper, nor in the presentation. The improper physics
referred to arises from the inclusion of those terms in the canal problem eigenseries which
have an imaginary value of D;,. This occurs when m, < I7/W. This point was also dis-
cussed by Bai (1981) and our implementation does in fact reflect the need to exclude unreal
exponentially growing terms in the solution. Although the theoretical solution is presented
in the form of an infinite series, we clearly use a finite truncated series in practice with
the exponential terms associated with imaginary values of Dj, modified to correspond to
decaying contributions only as £ — oo.
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Discusser T.Miloh

The expression for the velocity potential due to a wavemaker in a channel should be
modified (see equation (6) of attached paper*). Basically it includes a finite sum ©M of

harmonic terms, a term 337, of evanescent term and a double summation representing
trapped modes.

*L.Shemer, E.Kit and T .Miloh (1987) Measurements of two-and three-dimensional waves in
a channel, including the vicinity of cut-off frequencies, Experiments in Fluids, 5, pp.66-72.

Authors’ Reply

The point being made by Professor Miloh is related to those points made by Professors
Yeung and Eatock-Taylor earlier. In the paper kindly provided Professor Miloh and his
colleagues deal with the imaginary roots in exactly the same manner as we have indicated in
our reply to Ronald Yeung. In Professor Miloh’s presentation the exponential terms related
to our upstream and downstream flows are combined as a single hyperbolic term (a sinh
function) and so a different unknown coefficient has to be determined in the corresponding
eigenseries. Otherwise we appear to deal with the highlighted difficulty in the same manner.
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