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The direct numerical simulation of unsteady two-dimensional free surface flows using a boundary
integral method and a Lagrangian time-stepping procedure has received considerable attention since the
pioneering work of Longuet-Higgins and Cokelet /1/. One of the main difficulties encountered when a
free surface piercing body is present is the proper description of the flow in the vicinity of the intersection
between the rigid body and the free surface. Lin /2/ was the first to propose a numerical treatment which
permitted to overcome this difficulty. However, Lin’s method is empirical and a theoretical approach
seems necessary in order to assess the domain of validity of such a treatment.

A possible method to deal with this problem in a somehow formal way is to first gain insight into
the flow structure through an asymptotic study. Ideally, the proper behavior near the intersection point
could then be accounted for in the numerical scheme. It is this approach which will be discussed here.

Asymptotic behavior (weakly nonlinear regime).

Asin /2/, we consider a rectangular tank with a wavemaker at one end. Assuming a “sufficiently
large” depth, an asymptotic study of the problem indicates that their exist two regimes for the flow: a
weakly nonlinear regime for an acceleration of the wavemaker much smaller than that of gravity and an
impulsive regime for an acceleration of the wavemaker much greater than that of gravity. The difficulties
associated with the impulsive regime were discussed in /3/. Here, we restrict ourselves to the weakly
nonlinear regime.

Non-dimensional variables are defined using the depth of the tank, H, as length scale and the
acceleration of gravity, g, as acceleration scale. The wavemaker is assumed to be vertical (piston type).
The behavior of the solution near the intersection point between the wavemaker and the free surface is
then studied a priori using a method similar to that of Kravtchenko /4/. The resulting expansion of
the complex velocity potential ¥ in the vicinity of the intersection point is (the origin of the complex
plane is taken at the intersection point):
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where £ is the displacement of the wavemaker and Ag, uo and A3 are real-valued functions of time (which
are not known a priori). This behavior is consistent — in the weakly nonlinear regime — with that
derived from an expansion of the solution in a particular case by Roberts /5/.

Of interest to us in order to use a boundary integral method are the values of the velocity
potential, ®, and its normal derivative, ®,, along the boundary of the fluid domain.

On the z-axis, (1) yields:
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where s is a curvilinear abscissa along the boundary and s. the abscissa of the intersection point.
Similarly, on the y-axis, (1) yields:
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These expressions indicate that:

e ® and P, are continuously differentiable functions of s along the boundary, except at the
intersection point s,;

¢ @ is continuous at the intersection point, but, in general, its tangential and normal derivative
P, and ®,, are not. )

We, therefore, state the following regularity hypotheses:

the flow is said to be weakly regular at the intersection if the potential and its normal derivative
are continuously differentiable functions of the curvilinear abscissa along the boundary of the fluid,
except, may be, at the intersection point where ®, and ®, can experience a finite jump.

The result of our asymptotic study is that the flow is weakly regular at the intersections in the
weakly nonlinear regime. It can be shown that this result still applies for a non-vertical wavemaker
(angle of intersection 6 € [0,7]) L.

Numerical treatment (nonlinear problem).

Numerical treatments at the intersection point have been derived from the preceding asymptotic
study and implemented at IFP in the code SINDBAD (SImulation Numérique D’un BAssin De houle).
A mixed Eulerian-Lagrangian method similar to /1/ is applied to solve the full nonlinear equations.
Since similar methods have been widely discussed, we only insist here on the numerical treatment at
the intersection. At each time-step, we need to solve for the harmonic function ® knowing ® along the
free surface, I'q, and ®, along rigid boundaries, I',. We start from the integral equation:
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where G is the Green function and « the local angle of the boundary. The boundary of the domain is
approximated by segments and equation (4) is discretized assuming that ® and ®,, are linear along each
segment 2. In order to clearly distinguish nodes belonging to I'y from those belonging I'n,, nodes are not
located at the intersections 3.

A few different numerical treatments of the intersection points have been implemented. We
discuss here three of them for the intersection between a vertical wavemaker and the free surface . We
call C the point located at the left intersection, P; the neighboring point on the wavemaker and Py
the neighboring point on the free surface — figure 1.

We assume respectively:

[0] a linear variation of & and @, along the segment Py P;;

[1] a linear variation of ® and ®,, along the segments PpC and CP;, given by (2) and (3). The
values of Ao, ‘%’%ﬂ and 4 are expressed, using (2) and (3), in terms of the values of ® and ®, at P and
Py % is obtained directly from the wavemaker boundary condition;

[2] a linear variation of ® and ®, along the segments PpC and CP,, extrapolated from the
variation along the segments Ppri Py and Py P, respectively.

Treatment [0] is a “no treatment”; it assumes that the flow is (strongly) regular at the intersection.
Treatment [1] uses explicitly the local behavior (1). Treatment [2] assumes that the flow is weakly regular
at the intersection.

1The singularity is then in 2% for the complex potential (if & is not an integer). However, the strength of the singularity
(i.e., its coefficient in the expansion of ¥) is not, in this case, a local function of the bomM conditions:

2High-order polynomial expansions have not been used; they would not be consistent with the expansion (1). )

3This ambiguity in the nature of nodes located at the intersections is a problem encountered, f?r u}stance, in /2/ .
Lin overcame this difficulty by writing that the intersection points belong to both boundaries. This implies a continuity
hypothesis at the intersections which we want to make explicit here. .

4Similar treatments are also applied at solid-solid corner points. Treatments [0] and [2] also apply to a non vertical
wavemaker.
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A first test has been performed by solving the linear problem for a displacement of the wavemaker
(at rest for ¢ < 0):

t= ‘% cos(wt), (t>0) (%)

As in /2/, (5) will be referred to as a sine wavemaker motion. The length of the tank is equal to 5
and the pulsation w to %. The numerical solution as been compared at ¢ = 5 to a quasi-analytic linear
solution (see /6/). With 100 points on the free surface and a time step equal to 0.1, the relative error
(L? norm / a) is approximatively equal to 0.02 when [0] is used and 0.005 when [1] or [2] are used. This
result indicates that, for the linear problem:

e if one avoids to locate nodes at the intersection points, the weak singularity appearing in the
linearized problem is accomodated without any special treatment, i.e., the numerical scheme does not
blow-up and the accuracy is reasonable. Note, however, that some assumptions are implicitly made in
this “absence” of treatment;

e taking into account properly the singularity appearing at the intersections does improve signif-
icantly the accuracy of the numerical procedure, at no additional computational cost;

o for a sufficiently fine grid, the same degree of accuracy is achieved either by taking into account
explicitly the local behavior of the linear solution or by assuming the flow to be weakly regular at the
intersection.

The treatment [2] of the intersection point has then been used to solve the fully nonlinear problem.
A comparison with an analytic solution is not possible in this case. However, a comparison has been
made with a numerical second-order solution, leading to a good agreement for the free surface profiles
for a moderate acceleration of the wavemaker, /6/. Even for larger accelerations (breaking waves in
the tank), the proposed treatment appears to be efficient. We show on figure 2 a comparison between
SINDBAD and results from Lin /2/, the same discretisation being used (both in space and time). Both
results agree fairly well, but a smoother behavior is obtained near the intersection.

Conclusions.

In order to deal with the problem of the numerical determination of the flow in the vicinity
of a free surface piercing body, it is suggested that one should ensure that the numerical scheme is
consistent with the behavior of the solution at the intersection. This method permits to make explicit
the assumptions which are implicitly made in any numerical treatment of the intersection point. Good
results have been obtained with treatment [2] which do not use explicitly the local behavior of the linear
solution but only assumes the flow to be weakly regular at the intersections. These regularity hypotheses
are similar to those made implicitly by Lin /2/ in his treatment. They are fully consistent with the
local behavior of the solution in the weakly nonlinear regime.

However, more work remains to be done in order to get a better understanding of the impulsive
regime and to derive an appropriate treatment of the intersection point in this case. Clearly, a first
problem is to know if, on the length scale of the grid, the regularity hypotheses made here are consistent
with the local behavior of the flow in this regime.
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Figure 1 — Geometric definitions at the intersection
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Yeung: In the Bristol Workshop, we reported that the intersection-point treatment of Lin et al.
(1984) suffers a convergence problem as the grid size is reduced. Using a quasi-steady analysis,
we showed (Wu & Yeung, 1987) that the potential behaves locally like zlogz for a 90 degree
intersection because of the confluence of the boundary conditions. Effects of intersection angle on
the singularity were also discussed at that time.

I am pleased that more work on this problem has been carried out by the author. The present anal-
ysis, together with A.J. Roberts, suggests that the linearized free-surface condition has reduced the
singular behavior to a weaker type, 22 log 2. This is obviously more amenable to numerical treat-
ment, but it is subject to the restriction that body acceleration is small compared to gravitational
acceleration. Since nonlinear fluid motion of interest is often the result of O(g) acceleration, is it
not true that the proposed extrapolator treatment will suppress the genuine fluid motion near the
wall? In fact, the extrapolator scheme proposed has the peculiar property that the fluid motion
does not depend on the acceleration of the wall at all!

Ref: Wu, C. F. & Yeung, R. W. “Nonlinear Wave-Body Motion in a Closed Domain”, 2nd Int.
Workshop on Water Waves & Floating Bodies, Bristol, March, 1987

Cointe: I thank you for your comments. In your Bristol paper, you studied the problem after
discretization in time (which is a Neuman-Dirichlet boundary value problem). You showed neatly
how the confluence of boundary conditions yields, in this case, a singularity at the intersection,
in zlog z for the complex potential at a I corner. This result was in agreement with the local
expansions of the solution of the impulsive problem that were carried out by Lin both for the small

time expansion (® = O for y = 0) and the linear expansion (®y: + ®,k = 0 for y = 0).

However, these results puzzled me because, as early as 1954, Kravtchenko found a 22 log 2 singularity
for the linear harmonic problem (—w?® + @, = 0 for y = 0). Actually, Roberts showed that Lin’s
expansion of the linear problem is incorrect. He found for the linear solution of the impulsive
problem a rather strange behavior at the intersection (strongly oscillatory). However, Roberts
showed that the solution for a non-impulsive problem is smoother, and that linear theory is only
self-consistent for a bounded acceleration of the wavemaker. In this case, it is possible to check
from Robert’s expansion that the 22 log 2z behavior is recovered, in agreement with Kravtchenko’s
old result.

A rather simple explanation for these results has been proposed: the equations should only be
linearized in the weakly linear regime, i.e.for | I' |<< g; in this case the 2? log 2 behavior for the
transient problem can be exhibited a priori. The singularity of the problem after discretization
in time is, therefore, misleading. The difficulty is obviously to be able to account for the real
singularity in the numerics. In the weakly nonlinear regime, this has been achieved here either
by using explicitly the local behavior of the linear solution (treatment [1]) or by simply making
regularity hypotheses consistent with the linear solution (treatment [2]). I do agree with you
that the treatment [1] is a priori subject to the restriction that the acceleration is much smaller
than that of gravity. This is not the case, however, for treatment [2] which only assumes the
flow to be “weakly regular,” which is a regularity assumption similar to that made implicitly by
Lin. I therefore expect treatment (2] to be accurate as long as it ensures the convergence of the
numerical scheme. Presumably, only computations can show an upper limit for the acceleration
of the wavemaker. This limit could be quite large because, even in the impulsive regime, I do not
believe the local behavior of the flow to be zlog 2. Locally, the nonlinear terms in the free-surface
boundary condition should be retained, so that the & = 0 boundary condition is not appropriate.
Obviously, more work needs to be done along this direction.
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Schultz: You indicate, as we have, that dn/dz = —a at the wall, where a is the acceleration of the
wall. Have you checked if this condition has been met by your boundary integral calculations? It
would not be surprising if this were not the case, since boundary integral methods are not accurate
at corners, even if there is no singularity.

Cointe: For the linear solution of the problem, expansion (1) does indeed imply dn/dz = —a where
a is equal to I'/g. I thank you for suggesting to check if this condition is satisfied in the numerical
computation. I used SINDBAD (with treatment [2]) to compute the linear solution corresponding
to a sine wavemaker motion for which the velocity is continuous at ¢ = 0. The results are shown
on the figure: a good overall agreement is obtained, but oscillations occur at the beginning of the
computation. This is very likely due to the fact that the acceleration experiences a jump at ¢t = 0.
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