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Offshore structures used for storing oil usually possess large volumes near
the ocean floor. These structures may be open at the bottom with flow
communications between inside and outside. On the other hand, they may be sealed
at the edge resting firmly on the bottom. The design of such structures depend on
whether their bottom experiences hydrodynamic interaction from the waves. There
have been recent interest in the investigation of this hydrodynamic effect.
Naftzger and Chakrabarti (1975) considered the 1linear diffraction effect of
semispherical shell near the ocean floor and showed that the vertical forces on
the shell are reduced considerably when compared to a seated hemisphere. The
analytical results were correlated with experimental data from the wave tank
tests. The pressure inside a slightly open shell was shown to be represented
nicely by the mean pressures at the bottom of the hemisphere.

This paper presents the results of the theoretical study of wave forces on
fixed two-dimensional structures. The study focuses upon submerged structures in
the open ocean and, in particular, shell-like structures on or near the ocean
bottom. The basic theoretical framework is based on the main assumptions that (1)
the flow is irrotational throughout the greater portion of the flow field and (2)
the wave height to water depth ratio is small, so that the linear wave model is
applicable. We further assume that the only regions in which the flow is
rotational are the boundary layers on obstacles and the ocean bottom, resulting in
a circulation around the shell., Under these assumptions, the interaction between
the sea and a submerged body reduces to a problem in potential theory. This
problem can be solved generally by Green's method. Herein, the application of
this method to shells is developed and results obtained for a semicircular shell
are discussed and compared with experimental data for an open hemicylinder. The
manner in which the theoretical model for a raised shell approaches that for a
seated (or sealed) one is discussed with regard to the actual flow at its edges.

For moderately deep submergence of a half-cylinder on the ocean bottom, an
approximate solution for the potential, ¢, can be established using the series
method. Since far from the object the reflected wave will be just a fraction of
the incident wave, the free surface boundary condition on the total potential, ¢,
will be approximately satisfied by Jjust the incident, ¢p, and the boundary
condition on the scattered potential, bgs May be relaxed.

For plane flow, there exists a complex formulation for ¢ in terms of ¢,, the
Green's function, G, and a function f which corresponds to the value of bg gn the
object surface. The function, f, is real and can be expressed in terms of a
Fredholm equation of the second kind with integrals over the contour, C, and its
reflection, C* (Fig. 1).
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For both the half-cylinder and shell, as d/a + =, f(s), which is real,
approaches a much simpler form, f.(s). Consequently, f,(s) corresponds, to the
solution for deep submergence. f% the case of the han-cylinder, C+C is a
closed contour; wherefore, the integrals can be evaluated using Cauchy's Integral
Theorem. For deep submergence, one readily obtains the same result given by the
series method for large d/a. In the case of the shell, it appears that fo(s)
generally cannot be evaluated without the aid of a computer.

For the semicircular shell, the picture is further complicated by separation
at the edges of the shell and a discharge of vorticity. As the flow continues,
the shed vorticity will alter the flow pattern in such a way as to move the
stagnation point to the edge, making the velocity gradient there finite. Provided
that no separation occurs on the upper surface, the flow near the edge will then
be irrotational except for a small wake. Since the velocities near the edges of
the shell can be large, the convective inertia, in general, cannot be neglected
and the full Bernoulli equation should be used to determine the dynamic pressure
on C.

Generally, regions of separation will occur on both sides of the shell
accompanied by positive and negative vorticity. For any period, the net vorticity
discharge will be equivalent to some circulation around the shell. One finds that
to pass continuously from the solution for a raised shell to that for a seated
one, when the wave is at a crossover point, necessitates a smooth flow at the
edge(s) and some circulation around the body. It can be shown, at least for deep
submergence, that the circulation which is possible in the absence of vortices is
sufficient to ensure a continuous velocity at the edges and the correct 1imit as
the gap approaches zero. In actuality , one imagines vortices in the flow near
the origin or far downstream, whose velocity normal to the shell is small.

The difficult problem in passing to the seated solution obtains when there is
a crest or trough over the body, or, more precisely, when the pressure on the body
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is symmetric fore and aft. First, in this phase, the circulation will be small
and generally, vortices must be introduced adjacent to the semicircular shell, to
ensure a smooth flow at the edges. The introduction of such vortices is not an
altogether simple matter. Secondly, as their gaps become small, the flow beneath
the shells is reduced until the viscous forces at the bottom arrest all flow
underneath. The inside and outside of the shell are then separate flow regions,
but no flow is assumed inside. This assumption is based on the notion that the
vorticity is confined to the viscous region beneath the edge so that essentially
any flow inside the shell will be acyclic and irrotational. However, such a flow
cannot exist in a fluid bounded by a surface on which the normal velocity is
zero. Therefore, to the extent that flow around the edge(s) is absent, the normal
velocity there will be zero and no flow will exist inside.

In the absence of flow inside, the only dynamic pressure possible under the
shells is a uniform fluctuation. This situation will be referred to as an
"almost" sealed condition, as opposed to a completely sealed or seated condition
for which there is no fluid beneath the edge and no dynamic pressure inside. In
general, the "almost" sealed condition must be approached through solutions with
vorticity, not only to ensure a smooth flow at the edge, but also to have the
appropriate pressure differences there. When the pressure is symmetric fore and
aft, the flow will tend to stagnate at the bottom fore and aft such that the
difference in pressure between inside and outside is minimal., Hence, as the gap
size approaches zero, the uniform pressure fluctuation inside should equal the
symmetric part of the pressure outside at the stagnation points. Wherefore, the
limit for the differential pressure will be the outside pressure for the
completely sealed case less the value of its symmetric part at the stagnation
points at the bottom. For the semicircular shell, this Timit and that for the
flow in the absence of vorticity are the same due to the fact that the lengths of
both edges tend toward stagnation when the pressure is symmetric.

The analytical results for raised shells are based on the semicircular
surfaces whose centers of curvature lie at the bottom. Thus, it is only for small
openings between the structure and the bottom that the results will be a good
approximation to those for a raised hemicylinder. However, it is precisely this
situation which is of most interest.

The depth to radius ratio for the test setup was 3.17. Although this value
is not large enough for the free surface boundary to be neglected, the results
given by the deep submergence solution for d/a = 3.17 will provide a meaningful
comparison with the experimental data for the vertical force. It is estimated
that the average opening on the sides of the shell for the test setup was 5
degrees and that the mean wave height to radius ratio was approximately 0.4.
Based upon these estimates, a numerical evaluation of the shell solution was
carried out, and the amplitudes of the resulting horizontal and vertical forces
were computed. The normalized amplitudes for two values of the circulation are
shown in Fig. 2 plotted against ka. The forces are normalized with respect
to pgal H/2 , where 1 = length of the half-cylinder. The convective inertia term
which becomes important when ka is small and the wave height large, is included in
the computation of the forces on the shell. In the first case, which corresponds
to the lower (solid) curve, the circulation around the shell is zero. In the
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second case, corresponding to the upper curve, the circulation is such that a
stagnation point is located at an edge. The center-line curve denotes the limit
for no circulation as H/a + 0; this limiting curve for all practical purposes
coincides with the curve for H/a = 0.4 over the range of ka plotted. The
amplitudes of the horizontal and vertical forces (per unit Tlength) on the
corresponding seated hemicylinder is also shown in the figure as broken lines.
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The curve for which the circulation is such that the stagnation point lies at
an edge is thought to represent an upper bound at least for large ka. The fact
that one of the experimental points falls above this curve at ka = 1.8 suggests
that the free surface, which has been neglected, may serve to shift the
theoretical values up, providing a close agreement between the data and the curve
for no circulation. It is assumed that this will be the case, implying that the
circulation, whose value generally cannot be determined by potential theory, is
approximately zero for moderate and large ka. Clearly, more experimental data,
particularly for large d/a ratios, is needed to check the theoretical results
obtained thus far. The extent to which the vorticity actually remains near the
edge, probably can be determined only by experiments involving some sort of flow
visualization,
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