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In either diffraction or radiation problems we are often more
interested in the forces or moments on the body, than the actual potential
in the fluid domain. It is in this spirit that Molin (1979) and Lighthill
(1979) present formulations for the second-order unsteady force in terms of
first-order quantities with no dependence on knowledge of the second-order
potential. These formulations, then, do not involve the considerable
effort of determining the second-order potential, but they include
difficulty of integrating a quantity over the infinite free surface. For
instance 1in Molin's equation the integrand is the product of the
inhomogeneity of the second-order free-surface condition and an assisting
potential. Recall that it 1is the device of an assisting potential which
allows the recasting of the force formulation in one suitable for the
application of Green's theorem.

Similar formulations for both the radiation and diffraction forces can
be derived in the time domain. We assume that a general radiation problem
has been formulated by expanding the unknown potential in a power series of
a small parameter in the wusual way. Let us consider in particular, the
second-order unsteady force on the body. This  force contains a
contribution from the pressure due to the second-order potential integrated
over the mean position of the body. Since at each order the problem
statement for the potential is 1linear, we can split the second-order
potential into two parts: ‘one which satisfies the inhomogeneous free-
surface boundary condition and a homogeneous body boundary condition, and
one which satisfies complimentary conditions. This latter problem is just
the first-order problem revisited with a new right hand side, and therefore
it is easily solved. It is the force due to the potential satisfying the
inhomogeneous free surface condition which we would 1ike to find without
actually determining this potential.

For a body-fixed coordinate system, with x- and y-axes in the plane of
the free surface and the z-axis positive up, consider two potentials due to
an arbitrary body with motion in mode 1. Density, gravity, a_bo@y
dimension, and body velocity are set equal to 1, and the fluid domain is
semi-infinite.
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The assisting potential, ¢, satisfies:

v2g(X,t) =0  in fluid domain

L]

Pep +¥,=0 on free surface, Se

¢n n, on body surface, SB
$+0 as X + », for t finite
$(x,y,0,0) and ¢, (x,y,0,) = 0

and a second-order potential, ¢, satisfies:

V2¢(i,t) =0 in fluid domain

¢tt + ¢z h(x,y,0,t) on SF

¢n =0 on Sg

¢+ 0 as X + w,.for t finite
$(x,y,0,0) =0
$,(x,y,0,0) = - 5 (V 9)

where

h(x,y,0,8) = - 58 [00% ()% (8)7] + 8, 5% (8, + 8)

in which & is the first-order potential for this radiation problem.

Applying Green's theorem to ¢,(7) and ¢(t-7) gives (omitting spatial
arguments):

[ [p,09, (1) - $(t-n)g (1] dsp ¢ = 0
S8, F |

and invoking the body-boundary conditions and the free surface condition
for ¢ allows:

Joromiasg = Jlsnifeen) + penp(n]asy
B F




Integration of this equation in time from zero to t, and using integration
by parts to exchange the time derivatives on the right-hand side allows the
substitution of h for ¢t + ¢, thereby eliminating the second-order
potential. Subsequent partial differentiation in time recovers the
pressure integral for the force on the left-hand side resulting in:

t
Fro= - far [ g (tnn(nds, + [ g, (0, (£)ds,
0 SF : SF

For a body excited harmonically, this formulation recovers the
frequency domain result as time goes to infinity, and $ is essentially the
Fourier transform of the frequency domain assisting potential. Like the
frequency-domain version, this time-domain method of second order force
calculation contains an integral to be evaluated over the infinite free
surface. However in this case, for any finite time, the integrand decays
rapidly so we can expect accurate results with a truncated range of
integration.

The fact that the right hand side 1is a convolution demands that both
large and small time evaluations of the first order potentials be
accurate. We assume that for an arbitrary body in any mode of motion that
the first order potentials will be found by a boundary element
discretization of a Fredholm integral equation. It has been shown by Beck
and Liapis (1986) and Korsmeyer (1986) that this technique presents the
following difficulty: the manifestation of irregular frequencies in the
time domain is an oscillatory error in the impulse response function, L(t),
at large time, t. The appearance of this error may be delayed until a
later time by a finer discretization of the body geometry; but naturally,
for any particular discretization there exists some sufficiently large time
where an oscillatory error will be seen. To provide greater accuracy at
large t for a reasonable discretization, we can match the mumerical
solution to a large t asymptotic solution,

Simon and Hulme (1986) demonstrate that the added mass and damping
functions can be expanded to high order for small wave number, k. This is
accomplished by a direct expansion of the frequency-domain, radiation-
problem integral equation in powers of k and log k, creating a hierarchy of
equations all with the "rigid 1id" kernel on the left-hand side. This
technique can be a useful part of the solution of the linear time-domain
problem because the Fourier transform of either the added mass or damping
expansions provides the large t asymptotic expansion of L(t). So the
oscillatory error can be removed by matching a computed L(t) to this large
t expansion. The numerical effort involved is not formidable as all of the
damping expansion coefficients may be determined by a single matrix
decomposition, although the right-hand sides do become complicated as ?he
power of k increases. Simon and Hulme present the form of the damping
expansion; to fourth order in k, it is:

B(w) = m(byok + b2ok? + b31k3log k + b3gk3 + bgik4log k + bgok# + ...)
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The Fourier transform of this series can be determined easily from
Lighthill (1958) to be: :

L(t) = 2(2b1ot=3 - 4lbpot5 - 2(6!)b31t=71og t + (b3g+2¢(6)b31)6!t-7
+ 2(81)bg1t~90g t + (bgg-24(8)bg1)81t-9 + ...)

Where ¢(n) is the digamma function. When L(t) is corrected in this way at
large t, the Fourier cosine and sine transforms provide added mass and
damping curves free of irregular frequency effects. This makes the time-
domain approach not only efficient, but an accurate route to the usual
frequency-domain hydrodynamic quantites.

At second order, there are more sources of difficulty than just the
behavior at long time. For instance, both first order potentials evaluated
on the free surface are rapidly oscillatory very close to the body. But a
possible method to improve the accuracy of the second-order force
computation may be to correct the first-order potentials at long time.
Since the hierarchy of integral equations provides the expansion for the
potential, directly, it 1is possible to construct a large t asymptotic

expansion of a time domain potential, again through the application of the
Fourier transform.

Results are presented which demonstrate the efficacy of long time
asymptotics in both the first and second order problems.
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