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SECOND ORDER DIFFRACTED WAVES AROUND AN AXISYMMETRIC BODY
M.H. KIM Department of Ocean Engineering, MIT, Cambridge, Massachusetts, USA

INTRODUCTION Second order wave effects have been a topic of increasing
interest during the past decade, but controversies still abound even for the
simplest case of the second order force on the bottom extended cylinder in
regular waves. Molin (1979) derived the most consistent formulation which
correctly accounts for the second order radiation condition. However in
Molin’s formulation, only the second order exciting force can be obtained
rather than the second order diffraction potential itself which is useful

for the calculation of run up, local pressure and the velocity field. Here
the formulation ,which can solve for the second order diffraction potential,
is developed by applying Green’s theorem to the second order diffraction
potential and double frequency linear Green function. The resulting integral
equation is a Fredholm integral equation of the second kind which is almost
identical to that of the linear problem except for the additional free surface
integral. This two dimensional integral equation can be further reduced to
one dimensional form for the case of axisymmetric bodies by distributing ring
sources or dipoles on the body and the free surface.

STATEMENT OF THE PROBLEM Assuming potential flow and weak nonlinearity, we
can use a perturbation expansion for the velocity potential. Then the
boundary value problem for the second order-double frequency diffraction
potential ¢D(2) is
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radiation condition at infinity.

where the inhomogeneous term of the free surface condition consists of
quadratics of linear potential and its derivatives
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A main difference of this boundary value problem compared to a linearized one
is the existence of an inhomogeneous forcing term which extends to infinity.
As long as this forcing term is finite, or decays fast enough to make it
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absolutely square integrable (Cauchy-Poisson problem), the Sommerfeld
radiation condition is acceptable. However, because of the existence of a
non-decaying incident wave even at infinity, the radiation condition must be
reconstructed to satisfy a free surface condition up to leading order there.
Noting that the above boundary value problem is still linear, we can decompose
¢D(2) into a homogeneous solution, ¢y ,which satisfies homogeneous free
surface and inhomogeneous body boundary conditions, and a particular solution,
¢p , which satisfies inhomogenous free surface and homogenous body boundary
conditions. The asymptotic form of ¢y and ¢p can then be written ,as
suggested by Molin, as
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If Green’s theorem is applied to the second order diffraction potential and
the double frequency linear Green function, and the following weak radiation
condition is employed :
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A Fredholm integral equation of the second kind can be obtained with an
additional free surface integral compared to the linear problem :
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The first term of the righthand side corresponds to the contribution of the
homogeneous solution, and the second term is the contribution for the
particular solution. A main difficulty of this problem lies in the succesful
evaluation of the free surface integral whose convergence is very poor.
Because of this highly oscillating and slowly decaying integrand, any direct
truncation at some finite distance will cause significant error. In the
present research, an arbitrary vertical axisymmetric body is considered, for
which ¢D(2), q and G are expanded by Fourier cosine series:
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Integrating eq.(5) in the circumferential direction and using orthogonality,

the following one dimensional integral equation can be derived for each
Fourier mode :
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Here qn and G, are the n-th order inhomogeneous free surface term and ring
source respectively :
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The first step of the present analysis is to develop an efficient algorithm
for evaluating the ring source and its kernel to higher order. The rankine
part of the ring source and its kernel can be expressed by the second kind
Legendre functions of integer plus half order :
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For n=0,1 , Qn—l/Z can bg evaluated from the elliptic integrals, however, due
to instability of the forward recurrence, each order must be calculated
seperately. In calculating Q,.1/2 for the case n)2, two different forms of
hypergeometric series are found ,which are appropriate in each specific
region, and they are converted into Chebyshev economizing polynomials for
efficient calculation. »

An inverse discrete Fourier transform is used for the evaluation of the non
-singular ring source with finite number of spectral points M, and the related
error can be measured from the (M+1)-th term which converges to zero rapidly
with incresing M. To calculate the linear potential and its first and second
derivatives on the free surface more directly, the ring source distribution
method is used in preference to the combined distribution. After evaluating
qn and G, the next step ,which is the most critical and time consuming, is
the calculation of the infinite domain free-surface integral whose oscillating
amplitude decays as the inverse of the square root of the truncation point.
For this calculation we subtracted out the far field asymptotic of the
integrand and integrated it analytically :

IFS= JapdpqnGn+ jﬁdp(qnGn-qnGn)+ Jﬁdp qnGn (12)

We used following asymptotics for the ring source and ring potential, which
are exact outside the region where all local modes vanish :
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We can then derive the far field asymptotic of the integrand whose typical
terms are triple products of Bessel and Hankel functions. If we use Chebyshev
economizing polynomials of the Hankel function, which is valid outside the
truncation point, a contribution of the second integral in eq.(12) can be
neglected ,and the third integral can be expressed by triple summations which
include various kinds of related Fresnel integrals.

As a result we can shrink the upper bound of the numerical integration to
the limit of the local modes-free region. An alternative and much easier
approach is to use the leading asymptotic of the Hankel function. However
numerical experience shows that as the order increases, we have to go further

out on the free surface for a reasonable truncation, which results in huge
computing time.

NUMERICAL RESULTS

In solving the integral equation, the body contour is divided into straight
line segments and the strength of the ring source is assumed to be constant
over each panel. Numerical convergence of the linear diffraction problem is
tested for the bottom extended vertical cylinder by increasing the number of
segments and spectral points ,and three or four decimal accuracy is achieved.
A semi-analytic expression for the contribution of the second order
diffraction potential to the force on the bottom extended vertical cylinder,
can be obtained by using the explicitly known linear diffraction potential and
the double freqency radiation potential. The horizontal force calculated from
the first mode of a second order diffraction potential by the present method
is compared with this semi-analytic solution and there is good agreement, as
shown in figure 1. Second order wave run up around the cylinder ,including

the contribution of a second order diffraction potential, is compared with the
linear run up in figure 2.
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Discussion-

It is not clear to me why the integrand of the free-
surface integral doesn't converge rapidly. 1In fact the
disturbances in the 3D case, corresponding to waves in
the horizontal plane, should decay much quicker than in
the equivalent 2D case, where the disturbance is confined
in one direction only. It has been no problem in the past
to solve the second-order 2D problem in a satisfactory
manner (e.g. Papanikolaou et al, ONR, 1980). You might
have some irregular frequencies problems in the studied
frequency regions but these frequencies can be estimated
by formulas in the case of simplified bodies, like the
vertical cylinder.

The poor convergence of the free surface integral is due
to its highly oscillatory nature. A simple moving average
technique can be used unless high accuracy is required.
The 2nd order problem is more sensitive to the irregular
frequency because even the right hand side is affected by
that of the 1lst order problem.

A student of mine, F.P. Chau, is also working on this
problem, and has obtained results for ‘a vertical cylinder.
The principles of the formulation are similar to Kim's,
although details of the free surface integral differ. For
the cylinder Chau's results are based on a semianalytical
approach rather than on a ring source distribution. He has
compared the run-up predicted by Kim with his own results,
and finds similar but not identical results. Bearing in
mind the rapid variation of second-order pressure with
depth, one feels’ that the arrangement of constant source
segments must be very important near the free surface.
Could the author comment on the cornvergence of his mesh?

The size of the panel or mesh should be very fine for the
second order problem, especially near the free surface. It
is worthwhile to compare the results calculated from
different methods. The rapid variation of the pressure
near the free surface is accounted for in my program by
cosine spacing.




